

Programming in C - Advanced Features
1.) Introduction of C

C is a language for small, fast programs
how do you run the program?
Two types of command

2.) Memory and Pointers
Using memory pointers
How do you pass a string to a function?
Array variables are like pointers…
Why pointers have types
Using pointers for data entry
scanf()
fgets() is an alternative to scanf()

3.) Strings: String theory

Create an array of arrays
Find strings containing the search text
Using the strstr() function
Array of arrays vs. array of pointers

4.) Creating Small Tools

Introducing the Standard Error
fprintf() prints to a data stream
Connect your input and output with a pipe
The bermuda tool
Creating your own data streams
There’s more to main()

5.) Using Multiple Source Files

Data types
Type Casting
Creating your first header file
The shared code needs its own header file
Automate your builds with the make tool

6.) Structs, Unions, and Bitfields

Create your own structured data types with a struct
You need a pointer to the struct
(*t).age vs. *t.age
A union lets you reuse memory space
An enum variable stores a symbol
Bitfields store a custom number of bits

7.) Data Structures and Dynamic Memory

Linked lists are like chains of data
Linked lists allow inserts
Create a recursive structure
Create islands in C..
Inserting values into the list
Use the heap for dynamic storage
Give the memory back when you’re done
Ask for memory with malloc()…
Let’s fix the code using the strdup() function

8.) Advanced Functions
Pass code to a function
Every function name is a pointer to the function…
How to create function pointers
Get it sorted with the C Standard Library
Use function pointers to set the order
Create an array of function pointers

9.) Static and Dynamic Libraries
Angle brackets are for standard headers
Sharing .h header files
Share .o object files by using the full pathname
An archive contains .o files
Create an archive with the ar command…
Dynamic linking happens at runtime
create an object file

10.) Processes and System Calls

The exec() functions
The array functions: execv(), execvp(), execve()
Running a child process with fork() + exec()

11.) Inter-process Communication

Redirecting input and output
A look inside a typical process
Redirection just replaces data streams
fileno() tells you the descriptor
Connect your processes with pipes
Case study: opening stories in a browser
Opening a web page in a browser
The death of a process
Catching signals and running your own code
Rewriting the code to use a signal handler
Use kill to send signals

12.) Sockets and Networking
The Internet knock-knock server
Knock-knock server overview
BLAB: how servers talk to the Internet
Reading from the client
The server can only talk to one person at a time
You can fork() a process for each client
Writing a web client
Clients are in charge
Create a socket for an IP address
getaddrinfo() gets addresses for domains

13.) Threads in C

Create threads with pthread_create
Use a mutex as a traffic signal

