
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Introduction to C Programming

Course outline

Module 1: Basic Syntax and Structure of C

Module 1 of the Introduction to C Programming course covers the basic syntax and structure of the C
programming language. It introduces the fundamentals of the language, including variables, data types,
operators, and control flow. It also covers the basics of writing and debugging C programs.

Lessons

Overview of C Programming

Data Types and Variables

Operators and Expressions

Control Flow Statements

Functions

Arrays

Pointers

Structures

Input/Output

Preprocessor Directives

After completing this module, students will be able to:

Understand the basic syntax and structure of C programming language.

Write basic C programs using variables, constants, operators, and control statements.

Compile and execute C programs using a compiler.

Debug and troubleshoot C programs.

Module 2: Data Types and Variables

Module 2 of the Introduction to C Programming course covers the fundamentals of data types and
variables. Students will learn about the different types of data, such as integers, floats, and characters,
and how to declare and use variables. They will also learn about the different operators and how to use
them to manipulate data. Finally, students will learn about the different data structures available in C and
how to use them to store and manipulate data.

Lessons

Introduction to Data Types

Primitive Data Types

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Declaring Variables

Naming Variables

Assigning Values to Variables

Understanding Variable Scope

Working with Strings

Working with Arrays

Working with Structures

Working with Pointers

After completing this module, students will be able to:

Understand the different data types available in C programming and how to declare and initialize

variables.

Utilize the various arithmetic and logical operators to perform calculations and comparisons.

Use the if-else statement to control the flow of a program.

Utilize the switch statement to control the flow of a program.

Module 3: Operators and Expressions

Module 3: Operators and Expressions introduces students to the fundamentals of C programming,
including the use of operators and expressions. Students will learn how to use arithmetic, relational,
logical, and bitwise operators to create expressions and statements. They will also learn how to use the
various types of data in C programming, such as integers, floats, and characters. Finally, students will
learn how to use the various control structures in C programming, such as if-else statements, switch
statements, and loops.

Lessons

Introduction to Operators

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operators

Increment and Decrement Operators

Conditional Operators

Precedence of Operators

Type Conversion in Expressions

Evaluating Expressions

Operator Precedence and Associativity

Operator Overloading

Expressions and Statements

Writing Simple C Programs using Operators and Expressions

After completing this module, students will be able to:

Understand the different types of operators and how to use them in C programming.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Be able to write expressions using arithmetic, relational, logical, and assignment operators.

Be able to use the increment and decrement operators in C programming.

Be able to use the ternary operator to create conditional expressions.

Module 4: Control Flow Statements

Module 4: Control Flow Statements introduces students to the fundamentals of control flow statements in
C programming. Students will learn how to use if-else statements, switch statements, and loops to control
the flow of their programs. They will also learn how to use break and continue statements to modify the
behavior of loops. By the end of the module, students will have a better understanding of how to use
control flow statements to create more efficient and effective programs.

Lessons

Understanding the if-else Statement

Working with the switch Statement

Using the for Loop

Exploring the while and do-while Loops

Working with the break and continue Statements

Understanding the goto Statement

Working with Logical Operators

Using Conditional Operators

Writing Nested Control Flow Statements

Debugging Control Flow Statements

After completing this module, students will be able to:

Understand the concept of control flow statements and how they are used to control the flow of a

program.

Utilize if-else statements to create conditional logic in a program.

Use switch statements to create multiple branches of logic in a program.

Implement looping statements such as for, while, and do-while to create repetitive logic in a

program.

Module 5: Functions

Module 5 of the Introduction to C Programming course covers the fundamentals of functions in C.
Students will learn how to create and use functions, as well as how to pass parameters and return
values. They will also learn about the scope of variables and how to debug functions.

Lessons

Understanding the Basics of Functions

Writing and Calling Functions

Passing Arguments to Functions

Returning Values from Functions

Scope of Variables in Functions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Recursive Functions

Function Pointers

Inline Functions

Function Overloading

Preprocessor Directives for Functions

After completing this module, students will be able to:

Understand the concept of functions and how to use them in C programming.

Create and call functions with parameters and return values.

Utilize the library functions available in C programming.

Debug and troubleshoot errors related to functions.

Module 6: Arrays

Module 6: Arrays introduces students to the concept of arrays in C programming. It covers topics such as
declaring and initializing arrays, accessing array elements, and manipulating arrays. It also covers topics
such as multi-dimensional arrays, passing arrays to functions, and sorting and searching arrays. This
module provides a comprehensive overview of the array data structure and its uses in C programming.

Lessons

Introduction to Arrays

Declaring and Initializing Arrays

Accessing Array Elements

Array Operations

Multi-dimensional Arrays

Array Sorting

Array Searching

Array Manipulation

Array Pointers

Array Applications

After completing this module, students will be able to:

Understand the concept of an array and how to declare and initialize an array in C.

Be able to use array subscripts to access individual elements of an array.

Be able to use loops to iterate through an array and perform operations on each element.

Be able to use functions to pass arrays as arguments and return arrays as values.

Module 7: Pointers

Module 7: Pointers introduces students to the concept of pointers in C programming. It covers topics such
as memory addresses, pointer variables, pointer arithmetic, and dynamic memory allocation. Students
will learn how to use pointers to manipulate data and create efficient programs.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Lessons

What is a Pointer?

Memory Allocation and Pointers

Pointer Arithmetic

Pointers and Arrays

Pointers and Strings

Pointers and Structures

Pointers and Functions

Dynamic Memory Allocation

Pointer to Pointer

Pointers and Linked Lists

After completing this module, students will be able to:

Understand the concept of pointers and how to use them in C programming.

Be able to declare and initialize pointers.

Be able to use pointers to access and manipulate data in memory.

Be able to use pointers to pass arguments to functions and return values from functions.

Module 8: Structures and Unions

Module 8: Structures and Unions introduces students to the concept of data structures and unions in C
programming. It covers topics such as declaring and initializing structures, accessing structure members,
unions, and bit fields. It also covers the use of structures and unions in functions and pointers. This
module provides a comprehensive overview of the fundamentals of data structures and unions in C
programming.

Lessons

Overview of Structures and Unions

Declaring and Initializing Structures and Unions

Accessing Structure and Union Members

Nesting Structures and Unions

Pointers to Structures and Unions

Array of Structures and Unions

Bit Fields in Structures and Unions

Unions vs Structures

Applications of Structures and Unions

After completing this module, students will be able to:

Understand the concept of structures and unions in C programming.

Create and manipulate structures and unions in C programming.

Utilize structures and unions to store and access data in C programming.

Implement structures and unions to optimize memory usage in C programming.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Module 9: Input/Output

Module 9 of the Introduction to C Programming course covers the basics of input and output in C. It
covers topics such as reading and writing data from files, using the standard input and output streams,
and formatting output. It also covers the use of the printf and scanf functions for formatted input and
output.

Lessons

Understanding Input/Output Streams

Working with Files

Reading and Writing Text Files

Working with Binary Files

Understanding Standard Input/Output Streams

Working with Formatted Input/Output

Understanding Error Handling

Working with Command Line Arguments

Understanding File System Operations

Working with Directories

After completing this module, students will be able to:

Understand the concept of input/output operations in C programming.

Be able to read and write data from/to files.

Be able to use the standard I/O library functions such as fopen(), fclose(), fgetc(), fputc(), fscanf(),

fprintf(), etc.

Be able to use the command line arguments to read data from the user.

Module 10: Dynamic Memory Allocation

Module 10 of the Introduction to C Programming course covers the concept of dynamic memory
allocation. This module will teach students how to use the malloc() and calloc() functions to allocate
memory dynamically, as well as how to free memory with the free() function. Students will also learn
about the differences between static and dynamic memory allocation, and how to use pointers to access
dynamically allocated memory.

Lessons

Overview of Dynamic Memory Allocation

Allocating Memory with malloc()

Releasing Memory with free()

Working with Pointers and Dynamic Memory Allocation

Memory Leaks and How to Avoid Them

Dynamic Arrays and Structures

Memory Fragmentation and How to Avoid It

Dynamic Memory Allocation in Multithreaded Applications

Dynamic Memory Allocation Performance Considerations

Best Practices for Dynamic Memory Allocation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

After completing this module, students will be able to:

Understand the concept of dynamic memory allocation and its importance in C programming.

Utilize the malloc(), calloc(), realloc(), and free() functions to allocate and deallocate memory

dynamically.

Create and manipulate dynamic data structures such as linked lists, stacks, and queues.

Analyze the time and space complexity of programs that use dynamic memory allocation.

Module 11: Preprocessor Directives

Module 11: Preprocessor Directives introduces students to the concept of preprocessor directives in C
programming. It covers topics such as #include, #define, #ifdef, #ifndef, and #pragma. Students will learn
how to use these directives to control the compilation process and how to write their own preprocessor
directives.

Lessons

What is a Preprocessor Directive?

Understanding the #include Directive

Exploring the #define Directive

Working with the #ifdef Directive

Utilizing the #pragma Directive

Using the #error Directive

Exploring the #undef Directive

Working with the #ifndef Directive

Understanding the #line Directive

Utilizing the #warning Directive

After completing this module, students will be able to:

Understand the purpose of preprocessor directives and how they are used in C programming.

Utilize preprocessor directives to include header files and define macros.

Recognize the various types of preprocessor directives and their syntax.

Implement preprocessor directives to control the compilation process.

Module 12: Error Handling

Module 12: Error Handling introduces students to the fundamentals of debugging and error handling in C
programming. Students will learn how to identify and debug errors in their code, as well as how to use the
C language's built-in error handling functions. Additionally, students will learn how to use the debugger to
trace and debug their code.

Lessons

Understanding Error Messages

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Debugging Techniques

Exception Handling

Error Prevention Strategies

Common Error Types

Error Logging

Error Recovery

Error Handling Best Practices

Error Handling in C

Error Handling in C++

After completing this module, students will be able to:

Understand the concept of error handling and how to use it in C programming.

Identify and debug common errors in C programs.

Utilize techniques such as exception handling and assertions to handle errors.

Implement error handling strategies to ensure the reliability of C programs.

Module 13: Advanced C Programming Topics

Module 13: Advanced C Programming Topics is an introduction to more complex topics in C
programming. It covers topics such as memory management, pointers, dynamic memory allocation, and
data structures. It also covers advanced topics such as multi-threading, debugging, and optimization.
This module is designed to give students a deeper understanding of the C language and its capabilities.

Lessons

Memory Management

Pointers and Dynamic Memory Allocation

Structures and Unions

Bitwise Operators

Preprocessor Directives

File I/O

Command Line Arguments

Multi-Threading

Network Programming

Advanced Debugging Techniques

Advanced Compiler Optimization

Advanced Data Structures

Advanced Algorithms

Advanced Memory Management

Advanced Linked Lists

Advanced Sorting Algorithms

Advanced Search Algorithms

Advanced Graph Algorithms

Advanced String Manipulation

Advanced Recursion

●

●

●

●

After completing this module, students will be able to:

Understand the fundamentals of memory management in C programming.

Develop proficiency in using pointers and dynamic memory allocation.

Utilize advanced features of the C language such as structures, unions, and bit fields.

Implement complex algorithms and data structures in C programming.

	Introduction to C Programming
	Module 1: Basic Syntax and Structure of C
	Lessons
	After completing this module, students will be able to:

	Module 2: Data Types and Variables
	Lessons
	After completing this module, students will be able to:

	Module 3: Operators and Expressions
	Lessons
	After completing this module, students will be able to:

	Module 4: Control Flow Statements
	Lessons
	After completing this module, students will be able to:

	Module 5: Functions
	Lessons
	After completing this module, students will be able to:

	Module 6: Arrays
	Lessons
	After completing this module, students will be able to:

	Module 7: Pointers
	Lessons
	After completing this module, students will be able to:

	Module 8: Structures and Unions
	Lessons
	After completing this module, students will be able to:

	Module 9: Input/Output
	Lessons
	After completing this module, students will be able to:

	Module 10: Dynamic Memory Allocation
	Lessons
	After completing this module, students will be able to:

	Module 11: Preprocessor Directives
	Lessons
	After completing this module, students will be able to:

	Module 12: Error Handling
	Lessons
	After completing this module, students will be able to:

	Module 13: Advanced C Programming Topics
	Lessons
	After completing this module, students will be able to:

