Week

Main Topic

Key Topics Covered

—_

Advanced Java Foundations + Kotlin
Fundamental + Clean Code + Architecture
Basics

Advanced OOPS

Java Collections & Data Handling

Concurrency & Multithreading

Functional Programming with Java
Streams

Kotlin fundamentals

Difference and use of Java 17
features,

Solid Principles

Layered/Hexagonal Architecture
understanding.

N

Spring Boot Advanced Backend
Development

Spring Boot Internals & Advanced
Usage

Dependency Injection (DI) &
Inversion of Control (loC)

REST API Design — Beyond CRUD

Spring Boot 3.x & Modern Spring
Features




JPA / Hibernate — ORM with a
Design Mindset

Spring Data — Power with
Responsibility

Security with Spring Security & JWT

Integrations & External
Communication

Testing — Building Confidence in
Code

Swagger / OpenAPI — API Contract
as a First-Class Citizen

Advanced Angular + TypeScript Mastery —
Course Structure

TypeScript Deep Dive

Angular Architecture

Components & Services

Forms

Routing & Navigation

Angular 15 Features

State Management (RxJS / NgRx)

Ul Frameworks

Testing




N

Full-Stack Integration + Real-World Patterns

Connecting Angular & Spring Boot

End-to-End CRUD Flows

Authentication Workflow

File Handling

Pagination & Filtering

Role-Based Ul & Authorization

API Performance Considerations

End-to-End (E2E) Testing

[e2)

Capstone Project (Real Production-like Full-
Stack Build)

Full-Stack Application Design

Backend Development (Java /
Spring Boot)

Frontend Development (Angular)

Database Design (PostgreSQL)

Authentication & Authorization
(JWT)

End-to-End Workflows

Testing Strategy

Containerization (Docker)

Deployment & Environment Setup

Observability & Production
Readiness




Learning Goal Summary

Indicative Practicals / Exercise

Revisiting OOP principles with real-world
backend use cases to build extensible and
maintainable systems

Refactor a tightly coupled service into extensible, testable
components

Tnfernal workings of collections To gain
design-Level understanding to

choose the right collection based on
performance, concurrency, and memory
considerations

Optimize a data-processing module by choosing correct
collections

Common concurrency issues in production
systems and how to avoid them

Fix race conditions in a simulated order-processing system

Understanding When to use (and not use)
streams in real applications & Writing
expressive, readable, and performant stream
pipelines

Convert imperative logic to streams; compare readability &
performance

Writing idiomatic Kotlin for backend APis &
Interoperability between Java and Kotlin in
mixed codebases

Rewrite a Java service class in idiomatic Kotlin

Comparing legacy Java approaches with
modern alternatives with stress on when and
how to adopt newer features

Modernize legacy Java code using records, switch
expressions, etc.

Understanding beyon definitions & Applying
principles to improve flexibility, testability,
and extensibility

Identify SOLID violations in existing code and refactor

Designing systems that isolate business
logic from frameworks

Design a small service using Layered vs Hexagonal
architecture

VIOVE beyond using Spring Boot. 1o
understanding how it works under the hood,
enabling developers to reason about
performance, startup behavior, configuration,
and framework-driven design decisions in
real-world systems.

Debug and modify auto-configuration behavior in an existing
Spring Boot service

Analyze startup logs and optimize unnecessary bean loading

Understand DI as a design principle, not just
an annotation-driven feature, to build loosely
coupled, testable, and extensible backend
components.

Refactor a tightly coupled service to use proper DI and
interfaces

Identify hidden dependencies and redesign for testability

Design REST APIs that are consumer-
friendly, evolvable, and maintainable, suitable
for real-world frontend, mobile, and third-
party integrations.

Redesign a poorly structured REST APl tor clarity and
consistency

Introduce proper error contracts and status code usage

Understand what’s new Iin Spring Boot 3.x
and Spring Framework 6, and how these
changes impact modern backend
development and migration strategies.

Upgrade a Spring Boot 2.x application to 3.x

Resolve breaking changes and refactor deprecated usage




Use JPA/Hibernate effectively by
understanding how ORM works internally,
avoiding performance pitfalls and modeling
domain data correctly.

Identity and fix performance Issues caused by poor JPA
mappings

Refactor entities to align better with domain boundaries

Leverage Spring Data for productivity without
sacrificing control, clarity, or performance in
complex data-access layers.

Optimize a repository layer suffering from over-abstraction

Introduce custom queries for performance-critical paths

Understand security as a cross-cutting
architectural concern, not just configuration,
enabling developers to build secure,
stateless backend APIs.

Implement JWT-based authentication for a REST service

Debug and fix authorization issues across endpoints

Design backend services that safely and
reliably integrate with external systems, APls,
and services.

Integrate with an external API and handle failure scenarios
gracefully

Refactor integration logic to isolate external dependencies

Shift mindset from “testing for coverage” to
testing for confidence, correctness, and safe
refactoring.

Add unit and integration tests to an existing service

Refactor code to improve testability

Treat API contracts as design artifacts,
enabling better collaboration between
frontend, backend, and external consumers.

Design an API contract using Swagger/OpenAPI

Improve an existing API's documentation for clarity and
usability

Use TypeScript's type system as a design
tool to model domain concepts, prevent
bugs, and improve maintainability in large
Angular applications

Refactor loosely typed Angular code to strongly typed,
expressive contracts; model complex backend API responses
using advanced types

Understand Angular as an application
architecture platform to build scalable,
modular, and long-lived frontend systems

Redesign a flat Angular project into a feature-based
architecture; identify and fix architectural smells

Design components and services with clear
responsibilities to improve readability,
reusability, and ease of change

Break down large components into smaller focused
components and services; refactor business logic out of Ul
components

Model complex user workflows using
Angular forms that scale in validation, UX,
and maintainability

Build a multi-step reactive form with custom and cross-field
validators; refactor poorly structured form logic

Treat routing as a core architectural concern
to enable clear navigation, lazy loading, and
secure access

Introduce lazy-loaded routes and guards; redesign route
configuration for better UX and performance

Adopt Angular 15 features intentionally to
improve performance, developer experience,
and architecture

Migrate a module-based app to standalone components;
adopt typed forms to reduce runtime errors

Use reactive programming and state
management only where it adds real value,
avoiding unnecessary complexity

Refactor imperative async logic into RxJS pipelines; introduce
NgRx selectively for a complex feature

Integrate Ul frameworks without letting them
dictate application architecture or business
logic

Build a feature using a Ul library while maintaining clean
component boundaries and theming

Write reliable, intention-revealing frontend
tests that support safe refactoring and long-
term maintenance

Add meaningful unit tests for components and services;
refactor code to improve testability




Understand how frontend and backend
collaborate through clear contracts, enabling
scalable and maintainable full-stack systems

Connect an Angular application to a Spring Boot backend
using well-defined REST contracts; handle errors and loading
states consistently

Design complete CRUD workflows that work
reliably across Ul, API, service, and database
layers

Implement a full CRUD feature spanning Angular Ul, Spring
Boot REST API, service layer, and persistence

Understand authentication as a cross-cutting
concern spanning Ul, backend, and security
layers

Implement a JWT-based login flow with secure token handling
and protected routes

Handle file upload and download workflows
safely and efficiently in real-world
applications

Implement file upload/download with validation, size limits,
and error handling

Design pagination and filtering that scales
for large datasets and provides good user
experience

Implement server-side pagination and filtering and consume it
cleanly in Angular

Align frontend Ul behavior with backend
authorization rules without duplicating logic

Implement role-based access control affecting both Ul
visibility and backend endpoints

Reason about API performance from both
frontend and backend perspectives

Identify and fix slow APIs using pagination, caching, and
optimized data transfer

Validate real user workflows across the
entire stack with confidence

Write E2E tests using Cypress (or equivalent) covering critical
user journeys

Translate requirements into a well-
structured, end-to-end full-stack system

Define domain model, API contracts, Ul flows, and architecture
for the capstone application

Build a clean, scalable backend aligned with
product-grade engineering practices

Implement REST APIs with validation, security, persistence,
and business logic

Develop a maintainable, responsive Ul that
consumes backend APIs correctly

Build feature-based Angular modules with forms, routing, and
state management

Design relational schemas that support
performance, integrity, and future evolution

Create tables, relationships, indexes, and migrations

Implement secure, stateless authentication
workflows across the stack

Build login, role-based access control, and protected APIs

Ensure features work seamlessly across Ul,
API, service, and database layers

Implement full CRUD flows with validation and error handling

Build confidence through automated tests at
multiple layers

Write unit, integration, and E2E tests covering critical flows

Package the application for consistent local
and production environments

Dockerize frontend and backend with multi-stage builds

Experience real deployment workflows
similar to production

Deploy the application using Docker (and optionally cloud
infrastructure)

Reason about system behavior in production-
like conditions

Add logging, basic monitoring, and error tracking




Key Focus Area

VUDjeCUTICTITCU FToygrdartimmimmg T NOUiTl
Data Classes & Special Classes
Lambdas & Functional Programming
Scope Functions (Core Kotlin Feature)
Extension Functions & Properties
Error Handling

Generics

Kotlin + Java Interoperability

Basic Coroutines

AUto-contiguration: when It NeIps, when It NUrs
Application context lifecycle & bean creation

Profiles, configuration hierarchy, and environment-driven
design

Trade-offs of Spring Boot conventions vs explicit
configuration

Constructor vs field vs setter injection (and why it matters)
Bean scopes and lifecycle implications

Designing components around interfaces and contracts
Avoiding common DI anti-patterns in large codebases

Resource modeling vs endpoint-driven APIs

HTTP semantics: verbs, status codes, idempotency
Versioning strategies and backward compatibility
Error handling and validation strategies

Jakarta EE namespace changes and implications

Native image readiness and performance considerations
Observability improvements

Aligning Spring Boot 3 with Java 17 features




Entity lifecycle and persistence context

Lazy vs eager loading trade-offs

N+1 query problem and fetch strategies
Mapping domain models vs database schemas

Derived queries vs explicit queries
Pagination, sorting, and projections
Custom repository implementations
When not to use Spring Data abstractions

Authentication vs authorization concepts
JWT-based stateless security

Security filter chain and request lifecycle
Common security misconfigurations in REST APIs

REST clients (WebClient / RestTemplate — trade-offs)
Error handling, retries, and timeouts

Designing integration boundaries

Avoiding tight coupling with external systems

Unit vs integration vs slice testing

Writing meaningful tests using JUnit & Mockito
Mocking responsibly

Testing Spring components without slow test suites

Designing APIls contract-first vs code-first

OpenAPI annotations and structure

API documentation as a communication tool
Keeping documentation in sync with implementation

Generics, union/intersection types, mapped & conditional
types, type inference vs explicit typing, avoiding any

Feature-based structure, standalone components, separation
of concerns, testability

Responsibility-driven design, DI usage, lifecycle awareness,
avoiding god components

Reactive forms, dynamic forms, custom validators, form state
management

Lazy loading, guards, resolvers, URL design, deep linking

Standalone components, typed forms, performance
optimizations, migration strategies

Observables, async flows, local vs global state, NgRx
store/effects/selectors

Angular Material, theming, accessibility, responsive design, Ul
abstraction

Component testing, service testing, async & RxJS testing,
test readability




API contracts, DTOs, HTTP semantics, error handling,
frontend—backend responsibility boundaries

Data flow consistency, validation at multiple layers, DTO «
entity mapping

Auth flow design, token storage, route guards, backend
authorization

Multipart handling, streaming, security considerations,
frontend progress indicators

API pagination design, sorting strategies, frontend state
synchronization

RBAC concepts, Ul guards, backend enforcement, avoiding
security leaks

Over-fetching vs under-fetching, payload size, backend query
optimization

Test stability, environment setup, avoiding flaky tests,
realistic test scenarios

Requirement analysis, domain modeling, system boundaries

Clean architecture, SOLID principles, layered / hexagonal
design

Component design, state handling, UX consistency

Normalization, indexing, schema evolution

Security boundaries, token lifecycle, RBAC

Data consistency, error propagation, UX feedback

Test pyramid, testability, regression prevention

Environment parity, image optimization

Configuration management, environment separation

Operability, diagnostics, production mindset




