Java Level 2 Training

Day 1 — Java Recap & Object-Oriented Programming
Objective: Refresh fundamentals and strengthen OOP for independent coding.
Topics:

1. Java Basics Recap

o Variables (primitive vs reference types)

o Operators (arithmetic, relational, logical, bitwise)

o Control Flow (if-else, switch, loops)

o Methods (parameters, return types, overloading)
2. OOP Essentials
Classes & Objects, Constructors
Inheritance (extends keyword, method overriding)
Polymorphism (compile-time vs runtime)
Abstraction (abstract classes, methods)
Encapsulation (access modifiers, getters/setters)
3. Advanced OOP

o Interfaces & multiple inheritance

o Inner Classes (static, member, anonymous)

o Composition vs Inheritance (HAS-A vs IS-A relationship)

O O O O O

Handon Labs:

e Bank Account System: Implement deposits, withdrawals, and balance check using
classes & methods.

o Employee Class Hierarchy: Create base class Employee and subclasses (Manager,
Developer) demonstrating inheritance & polymorphism.

o Debugging in IDE: Set breakpoints, inspect variables, step into/step over methods.

Day 2 — Java APIs, Exceptions & Multithreading

Objective: Build robust and concurrent programs.
Topics:

1. Collections Framework
o List (ArrayList, LinkedList)
o Set (HashSet)
o Map (HashMap)
o Queue (PriorityQueue)
2. Exception Handling
o Checked vs Unchecked exceptions
o try-catch-finally block
o Throwing & creating Custom Exceptions



o Best practices (specific exceptions, avoiding empty catch blocks)
3. Functional Programming

o Lambdas: (args) -> expression

o Streams API: map, filter, reduce, collect
4. Multithreading Basics

o Creating threads: Thread Vs Runnable

o Thread lifecycle & Synchronization

Handon Labs:

o Library Management System: Store books in a List, search/filter using Streams
API.

e Custom Exception: Create InvalidBookException for invalid data input.

e Multi-threaded Ticket Booking System: Multiple threads booking seats.

o Employee Records with Stream API: Filter employees by salary, department, etc.

Day 3 — Git, Build Tools & JUnit Testing

Objective: Learn enterprise development tools for collaboration & testing.
Topics:

1. Git Essentials
o Gitinit, clone, add, commit, push, pull
o Branching & merging
o Handling merge conflicts
2. Build Tools
o Maven: POM.xml structure, dependencies, lifecycle (compile, test, package,
install)
o Gradle: build.gradle scripts, dependency management
o Maven vs Gradle comparison
3. JUnit Testing
Lifecycle: @BeforeEach, @AfterEach, @BeforeAll, @AfterAll

o

o Assertions: assertEquals, assertTrue, assertThrows
o Parameterized tests
o Basics of TDD (red — green — refactor cycle)

Handon Labs:
e Git Repo Setup: Initialize repo, create branches, push to GitHub.
e Maven Project Creation: Create & run simple HelloWorld app.

e Convert Maven — Gradle Project: Add Gradle build scripts.
e JUnit Tests for Services: Write unit tests for Calculator or Employee Service class.

Day 4 — Spring Boot Foundations

Objective: Build REST APIs with Spring Boot.



Topics:

1. Spring Core Concepts
o Inversion of Control (IoC), Dependency Injection (DI)
o Bean lifecycle, @Component, @Autowired
2. Spring Boot Basics
o Starters (spring-boot-starter-web, spring-boot-starter-data-jpa)
o Auto-configuration
o Project structure & application.properties
3. REST Controllers
o (@RestController, @RequestMapping
o GET, POST, PUT, DELETE endpoints
o RequestBody vs PathVariable vs RequestParam
4. Service Layer
o Separation of concerns
o Business logic in @Service classes

Handon Labs:

e Create Spring Boot Project: Using Spring Initializr.

o Employee Service: CRUD operations with hardcoded data.
o Build REST APIs: Expose endpoints for employee CRUD.
e Test with Postman: Call APIs and check responses.

Day 5 — JPA, Spring Testing & Guided Mini Project
Objective: Persist data with JPA and integrate testing.
Topics:

1. Spring Data JPA
o Entities, @ld, @GeneratedValue
o Repositories (CrudRepository, JpaRepository)
o ORM basics & Hibernate overview
o Custom Queries with @Query
2. Database Integration
o H2 Database setup (in-memory)
o Schema auto-generation
3. Spring Testing
o (@SpringBootTest for integration testing
o Repository & service layer testing

Lab (Guided Mini Project):
Employee Management System — Phase 1
e Create Entity: Employee (id, name, department, salary)

e CRUD APIs with JPA repository
o Unit tests for Employee repository & service



e Push project to GitHub

Day 6 — Validation, Exception Handling & Optimizing
REST APIs

Objective: Apply validation, centralized exception handling and optimize REST APIs.
Topics:

e Global exception handling using @RestControllerAdvice

e Custom exception handling

e Request validation using @Valid & Hibernate Validator (e.g., @NotNull, @Email,
@Size)

o Pagination & filtering for large datasets (Pageable)

e Caching with Spring Cache

Lab (Enhance Mini Project):

Add validation to Employee entity (name not empty, salary > 0)
Implement GlobalExceptionHandler with @ControllerAdvice
Add pagination API for employee list

Add caching for “Get All Employees” API

Day 7 — Spring Security & Monitoring with Actuator

Objective: Implement spring security and monitoring with actuator.

Topics:
o Securing REST APIs with Spring Security
o Enabling Spring Boot Actuator endpoints
e Health checks & metrics (health, info, metrics)
e Securing actuator endpoints

Lab (Enhance Mini Project):
Add Spring Security to Employee Management System
Secure endpoints with Basic Auth

Enable actuator endpoints & check health, metrics
Restrict actuator endpoints

Day 8 — Sessions, JWT & OWASP Essentials

Objective: Secure Spring Boot apps using sessions, cookies, JWT, and OWASP.

Topics:



e Session management & cookies in Spring Boot

e JWT Authentication flow (login — token — verify — access)
e Role-based authorization for APIs

e OWASP Top 10 Security Practices

Lab (Secure Mini Project):
e Implement JWT Authentication (login — token generation)
e Apply role-based access to Employee APIs

e Add secure headers
e Apply OWASP best practices

Day 9 & 10 — Capstone Project & Presentations
Objective: Apply all concepts to a full-fledged system.

Project Ideas:

Online Course Management System — Manage courses, students, enrolments
Inventory Management System — Track products, stock, suppliers

Online Task Manager — CRUD + multithreading for scheduling tasks
Employee Payroll System — Calculate salaries, maintain payroll history

b s

Requirements:

e Spring Boot backend with REST APIs

o JPA persistence with DB

e GitHub repo for collaboration

o JUnit tests for at least 3 critical services
e Request validation & exception handling
e JWT authentication + role-based access
e Apply OWASP Top 10 best practices

Deliverables:

e Working Spring Boot application

o Database persistence with JPA

e Unit test coverage

e Code hosted on GitHub

e Final demo & architecture explanation



