PLC, SCADA, and HMI Systems for Beginners

Course Description:

This integrated course provides a complete journey through industrial automation using Siemens technologies. Covering the programming of Siemens S7-1200 and S7-1500 PLCs with TIA Portal, the configuration and administration of SCADA systems using WinCC Advanced, and best practices in Human-Machine Interface (HMI) design and implementation, the program combines theory with extensive hands-on practice. Participants will gain skills to confidently design, implement, and troubleshoot real-world automation systems across factory, process, and machine automation environments.

Audience Profile:

This course is designed for:

- Engineering students seeking applied knowledge in PLCs, SCADA, and HMI systems.
- Automation engineers, system integrators, and maintenance technicians.
- Electricians and technical staff transitioning into Siemens-based systems.
- IT professionals supporting industrial automation projects.
- Anyone aiming to master practical Siemens industrial automation technologies.

Prerequisite Knowledge/Skills:

- Basic understanding of electrical circuits and industrial automation principles.
- Familiarity with programming concepts (not mandatory but beneficial).
- General awareness of industrial networks and controllers.

Course Objectives:

After completing this course, participants will be able to:

- Explain industrial automation concepts and different types of control systems.
- Program Siemens S7-1200 and S7-1500 PLCs using TIA Portal in multiple programming languages.
- Configure and administer SCADA systems using WinCC Advanced, including alarms, trends, and data logging.
- Design user-friendly HMI interfaces aligned with industry standards and best practices.

- Perform analog signal processing, fault diagnostics, and parameter management.
- Develop, deploy, and troubleshoot integrated industrial automation solutions.

Table of Contents:

Part 1: Siemens PLC Programming with TIA Portal

Module 1: Introduction to Automation and PLCs

- What is automation
- Types of control systems
- Closed-loop control systems
- PLC overview, units, advantages and disadvantages
- Industrial applications of PLCs

Module 2: PLC Architecture and Components

- PLC block diagram and CPU details
- Input/output modules and power supply
- Expansion modules and overall system architecture
- PLC capabilities and selection criteria

Module 3: S7 Controllers and Programming Fundamentals

- Overview of S7 controllers
- Addressing digital I/Os
- Communication protocols (Profibus, etc.)
- Sink and source concepts
- CPU scan cycle and PLC programming languages

Module 4: TIA Portal Fundamentals and Project Setup

- Introduction to TIA Portal environment
- Hardware configuration and project creation
- PC and PLC communication setup
- Clock memory, memory reset, and language switching
- Cyclic program execution and selection of PLC models

Module 5: Basic PLC Programming Techniques

- Writing instructions and logical operations (AND, OR, NOR)
- Data types and result of logic operation (RLO) concepts
- Load, work, and system memory
- Practical labs: lamp and motor control using NO/NC contacts and branching networks

Module 6: Timers, Counters, and Advanced Program Design

- Timer types and usage (pulse, delay, etc.)
- Counter operations and comparison functions
- Program design techniques
- Practical labs: sequential motor control, conveyor systems, car parking logic

Module 7: Program Structure, Blocks, and Interrupts

- FB vs FC block architecture and editing
- Program organization and calling routines
- Warm, cold, and hot restart behavior
- Time-of-day and cyclic interrupts

Module 8: Processing of Analog Values

- Analog sensor wiring and signal flow
- Engineering value conversion
- Use of Norm X and Scale X function blocks
- Practical lab: analog speed regulation using potentiometer signals

Module 9: Diagnostics, Faults, and Parameter Passing

- Functional vs system faults
- Cross-reference tools and forcing I/O variables
- Parameter passing and shared data blocks
- Practical troubleshooting scenarios

Module 10: Practical Examples and Course Review

- Real-world integrated programming examples
- Consolidated course review and discussion

Part 2: Siemens SCADA Systems with WinCC Advanced

Module 11: Introduction to SCADA Systems

- Overview and functions of SCADA
- Siemens SCADA architecture examples
- Data acquisition, communication, and visualization
- Comparison of PLC vs PC and real-world applications

Module 12: Creating SCADA Projects in WinCC Advanced

- Project creation and adding devices
- Setting up Ethernet addresses and runtime configuration
- Connecting to integrated and non-integrated PLCs
- Basic configuration exercises with buttons and outputs

Module 13: Configuring Graphics and Displays

- Graphic view setup
- Text and alphanumeric displays
- Configuring text lists, graphic lists, movement and fill properties

Module 14: Alarm Management

- Alarm configuration steps and message blocks
- Alarm classes and discrete trigger settings
- Displaying and managing alarms in WinCC Advanced
- Practical exercises

Module 15: Data Logging and Trend Analysis

- Process value logging and data log setup
- Editing tags and trend view configuration
- Properties of trend views
- Practical exercises in data analysis

Module 16: Recipe Management

- Structure and editing of recipes
- Communication with controllers through tags
- Table representation, sorting, exporting, and configuring views
- Recipe editor setup and practical exercises

Module 17: User Administration and Access Control

- User administration structure and access protection
- Creating authorizations and assigning them to objects
- Configuring user groups and login dialogues
- Practical exercises in user management

Part 3: HMI Design and Implementation

Module 18: HMI Fundamentals and WinCC Overview

- HMI definition and its role in automation
- Components of WinCC and engineering/runtime editions
- Licensing, system limits, and requirements

Module 19: Project Creation and Device Integration

- Adding devices and establishing PLC connections
- Configuring runtime settings and basic HMI elements
- Practical exercises with push buttons and outputs

Module 20: HMI Configuration and Best Practices

- Designing user-friendly screens
- Input/output field configuration and graphical lists
- Configuring movement, fill properties, and navigation

Module 21: Advanced HMI Functions

- Alarm, data logging, trend and recipe integration into HMI
- User administration and security in HMI applications
- Best practices for usability, visualization, and ethical design