Introduction to PCB Design

Course Description: This course provides a comprehensive introduction to PCB (Printed Circuit Board) design, covering fundamental concepts, essential terminology, and industry-standard workflows. Learners will explore CAD tools, schematic creation, PCB layout, and manufacturing processes. Through hands-on exercises, students will gain practical experience in designing, documenting, and preparing PCB projects for fabrication and assembly.

Audience Profile:

- Engineering students and professionals interested in PCB design
- Electronics hobbyists looking to enhance their design skills
- Individuals transitioning into PCB design roles
- Anyone interested in learning Altium Designer and related PCB design tools

Prerequisites:

- Basic understanding of electronics and circuit components
- Familiarity with schematic diagrams
- No prior experience in PCB design required

Course Objectives: By the end of this course, learners will be able to:

- Understand the fundamentals of PCB design and its significance in electronics
- Navigate and utilize PCB design software effectively
- Create schematic diagrams and design PCBs using CAD tools
- Select and place components appropriately within a schematic
- Develop and optimize PCB layouts for manufacturing
- Generate fabrication and assembly files required for PCB production
- Understand the PCB manufacturing and assembly process

Table of Contents:

Unit 1: Introduction to PCB Design

- Introduction and Important Terminology
 - What is Printed Circuit Board Design?
 - PCB Design Software
 - Basic Terms to Get Started
- The Role of CAD Tools
 - Schematic Sheets
 - PCB Layout
 - Bill of Materials (BOM)
 - PCB Libraries
 - Summary
- Your First PCB Project
 - How to Create a New Project
 - Make Your Project Shareable

Unit 2: Understanding Schematics

- Anatomy of a Schematic
 - What is a Net?
 - Power and Ground Ports
 - Notes in a Schematic
 - How Components Are Used in a Schematic
 - Multi-Part Symbols
 - o Inputs, Outputs, and Bi-directional Pins
 - Ports for Connections Between Schematics
 - o Summary
- Types of Schematics

- Hierarchical Schematics
- Flat Schematics
- What to Do Before Building Schematics
- o Summary
- Selecting and Placing Components
 - Where to Find Components
 - Finding Components in Altium Designer
 - The Components Panel
 - Other Resources to Find Components
 - Where to Place Components in a Schematic
 - Organizing Schematics
 - Understanding the Electronics Supply Chain
 - Exercise: Open Your Project and Recreate a Schematic
 - Summary

Unit 3: PCB Layout

- What is a Printed Circuit Board?
 - Anatomy of a PCB
- The PCB Design and Manufacturing Process
 - The Role of a PCB Designer
 - Design Tasks Outside Your ECAD Software
 - Preparing for Manufacturing
- The PCB Design Workflow
 - What About Solo Designers?
 - Next Steps

Unit 5: PCB Manufacturing

• Preparing for Manufacturing

- PCB Fabrication Files
- PCB Assembly Files
- Generating PCB Manufacturing Files
- DFM Evaluation and Analysis
- DFA Inspection
- Panelization
 - An Example Panel
 - Standard Panel Sizes and Orientation
 - Depanelization
 - Creating a Panel in Altium Designer
- The PCB Fabrication Process
 - Inner Layer Processing
 - Outer Layer Processing
 - Final Electrical Testing and Inspection
 - o Summary