
Architecting Cloud-Native .NET Apps for Azure
Duration: 40 hours

Targeted Audience profile:

The audience for this course is mainly developers, development leads, and architects who are
interested in learning how to build applications designed for the cloud.

A secondary audience is technical decision-makers who plan to choose whether to build their
applications using a cloud-native approach.

How this will benefit you:

This course begins by defining cloud native and introducing a reference application built using
cloud-native principles and technologies. Beyond these first two chapters, the rest of the
course is broken up into specific chapters focused on topics common to most cloud-native
applications. You can learn about cloud-native approaches to:

• Data and data access

• Communication patterns

• Scaling and scalability

• Application resiliency

• Monitoring and health

• Identity and security

• DevOps

Content

1. Introduction to Cloud-Native Applications

• Introduction to Cloud-native computing

• What is Cloud Native?

• The pillars of cloud native

• The cloud

• Modern design

• Microservices

• Containers

• Backing services

• Automation

• Candidate apps for cloud native

• Modernizing legacy apps

2. Introducing eShopOnContainers Reference App

• Features and requirements

• Overview of the code

• Understanding microservices

• Mapping eShopOnContainers to Azure Services

• Container orchestration and clustering

• API Gateway

• Data

• Event Bus

• Resiliency

• Deploying eShopOnContainers to Azure

• Azure Kubernetes Service

• Deploying to Azure Kubernetes Service using Helm

• Azure Functions and Logic Apps (Serverless)

• Centralized configuration

• Azure App Configuration

• Azure Key Vault

• Configuration in eShop

3. Scaling Cloud-Native Applications

• Leveraging containers and orchestrators

• Challenges with monolithic deployments

• What are the benefits of containers and orchestrators?

• What are the scaling benefits?

• What scenarios are ideal for containers and orchestrators?

• When should you avoid using containers and orchestrators?

• Development resources

• Leveraging serverless functions

• What is serverless?

• What challenges are solved by serverless?

• What is the difference between a microservice and a serverless
function?

• What scenarios are appropriate for serverless?

• When should you avoid serverless?

• Combining containers and serverless approaches

• Deploying containers in Azure

• Azure Container Registry

• ACR Tasks

• Azure Kubernetes Service

• Azure Bridge to Kubernetes

• Scaling containers and serverless applications

• The simple solution: scaling up

• Scaling out cloud-native apps

• Other container deployment options

4. Cloud-Native Communication Patterns

• Communication considerations

• Front-end client communication

• Simple Gateways

• Azure Application Gateway

• Azure API Management

• Real-time communication

• Service-to-service communication

• Queries

• Commands

• Events

• gRPC

• What is gRPC?

• gRPC Benefits

• Protocol Buffers

• gRPC support in .NET

• gRPC usage

• gRPC implementation

• Looking ahead

5. Cloud-Native Data Patterns

• Database-per-microservice, why?

• Cross-service queries

• Distributed transactions

• High volume data

• CQRS

• Event sourcing

• Relational vs. NoSQL data

• The CAP theorem

• Considerations for relational vs. NoSQL systems

• Database as a Service

• Azure relational databases

• Azure SQL Database

• Open-source databases in Azure

• NoSQL data in Azure

• Data migration to the cloud

• Caching in a cloud-native app

• Why?

• Caching architecture

• Azure Cache for Redis

• Elasticsearch in a cloud-native app

6. Cloud-Native Resiliency

• Application resiliency patterns

• Retry pattern

• Circuit breaker pattern

• Testing for resiliency

• Azure platform resiliency

• Design with resiliency

• Design with redundancy

• Design for scalability

• Built-in retry in services

• Resilient communications

• Service mesh

• Istio and Envoy

• Integration with Azure Kubernetes Services

7. Monitoring and Health

• Observability patterns

• When to use logging

• Challenges with detecting and responding to potential app health issues

• Challenges with reacting to critical problems in cloud-native apps

• Logging with Elastic Stack

• Elastic Stack

• What are the advantages of Elastic Stack?

• Logstash

• Elasticsearch

• Visualizing information with Kibana web dashboards

• Installing Elastic Stack on Azure

• Monitoring in Azure Kubernetes Services

• Azure Monitor for Containers

• Log.Finalize()

• Azure Monitor

• Gathering logs and metrics

• Reporting data

• Dashboards

• Alerts

• References

8. Cloud-Native Identity

• Authentication and authorization in cloud-native apps

• Azure Active Directory

• IdentityServer for cloud-native applications

• Common web app scenarios

• Getting started

• Configuration

• JavaScript clients

9. Cloud-Native Security

• Azure security for cloud-native apps

• Threat modeling

• Principle of least privilege

• Penetration testing

• Monitoring

• Securing the build

• Building secure code

• Built-in security

• Azure network infrastructure

• Role-based access control for restricting access to Azure resources

• Securing secrets

• Azure Key Vault

• Kubernetes

• Encryption in transit and at rest

• In transit

• At rest

• Keeping secure

10. DevOps

• Azure DevOps

• GitHub Actions

• Source control

• Repository per microservice

• Single repository

• Standard directory structure

• Task management

• CI/CD pipelines

• Azure Builds

• Azure DevOps releases

• Everybody gets a build pipeline

• Versioning releases

• Feature flags

• Implementing feature flags

• Infrastructure as code

• Azure Resource Manager templates

• Terraform

• Azure CLI Scripts and Tasks

• Cloud Native Application Bundles

• DevOps Decisions

