Architecting Cloud-Native .NET Apps for Azure

Duration: 40 hours
Targeted Audience profile:

The audience for this course is mainly developers, development leads, and architects who are
interested in learning how to build applications designed for the cloud.

A secondary audience is technical decision-makers who plan to choose whether to build their
applications using a cloud-native approach.

How this will benefit you:

This course begins by defining cloud native and introducing a reference application built using
cloud-native principles and technologies. Beyond these first two chapters, the rest of the
course is broken up into specific chapters focused on topics common to most cloud-native
applications. You can learn about cloud-native approaches to:

e Dataanddata access
e Communication patterns
e Scaling and scalability
e Application resiliency
¢ Monitoring and health
e |dentity and security
e DevOps
Content
1. Introduction to Cloud-Native Applications
e Introduction to Cloud-native computing
e Whatis Cloud Native?
e The pillars of cloud native
e Thecloud
e Modern design
e Microservices
e Containers
e Backing services
e Automation
e Candidate apps for cloud native

e Modernizing legacy apps

2. Introducing eShopOnContainers Reference App

e Features and requirements

e Overview of the code

¢ Understanding microservices

¢ Mapping eShopOnContainers to Azure Services

Container orchestration and clustering
AP| Gateway

Data

Event Bus

Resiliency

o Deploying eShopOnContainers to Azure

Azure Kubernetes Service
Deploying to Azure Kubernetes Service using Helm

Azure Functions and Logic Apps (Serverless)

e Centralized configuration

Azure App Configuration
Azure Key Vault

Configuration in eShop

3. Scaling Cloud-Native Applications

e Leveraging containers and orchestrators

Challenges with monolithic deployments

What are the benefits of containers and orchestrators?
What are the scaling benefits?

What scenarios are ideal for containers and orchestrators?
When should you avoid using containers and orchestrators?

Development resources

e Leveraging serverless functions

What is serverless?
What challenges are solved by serverless?

What is the difference between a microservice and a serverless
function?

What scenarios are appropriate for serverless?

When should you avoid serverless?

e Combining containers and serverless approaches

o Deploying containers in Azure

Azure Container Registry
ACR Tasks
Azure Kubernetes Service

Azure Bridge to Kubernetes

e Scaling containers and serverless applications

The simple solution: scaling up

Scaling out cloud-native apps

e Other container deployment options

4. Cloud-Native Communication Patterns

¢ Communication considerations

e Front-end client communication

Simple Gateways
Azure Application Gateway
Azure APl Management

Real-time communication

e Service-to-service communication

Queries
Commands

Events

What is gRPC?

gRPC Benefits
Protocol Buffers
gRPC supportin .NET
gRPC usage

gRPC implementation

Looking ahead

5. Cloud-Native Data Patterns
e Database-per-microservice, why?
e Cross-service queries
o Distributed transactions
e Highvolume data
e CQRS
e Eventsourcing
e Relationalvs. NoSQL data
e The CAP theorem
e Considerations for relational vs. NoSQL systems
e Database as a Service
e Azurerelational databases
e Azure SQL Database
e Open-source databases in Azure
e NoSQL datain Azure
e Data migration to the cloud
e Cachingin a cloud-native app
e Why?
e Caching architecture
e Azure Cache for Redis
e Elasticsearch in a cloud-native app
6. Cloud-Native Resiliency
e Application resiliency patterns
e Retry pattern
e Circuit breaker pattern
o Testing for resiliency
e Azure platform resiliency
e Design with resiliency
e Design with redundancy
o Design for scalability

e Built-inretry in services

¢ Resilient communications
e Service mesh
e |stio and Envoy
e Integration with Azure Kubernetes Services

7. Monitoring and Health

e Observability patterns
e When to use logging
o Challenges with detecting and responding to potential app health issues

e Challenges with reacting to critical problems in cloud-native apps

Logging with Elastic Stack
o Elastic Stack
¢ What are the advantages of Elastic Stack?
e Logstash
o Elasticsearch
¢ Visualizing information with Kibana web dashboards

e Installing Elastic Stack on Azure

Monitoring in Azure Kubernetes Services
o Azure Monitor for Containers
o Log.Finalize()

Azure Monitor

e Gathering logs and metrics
e Reporting data

e Dashboards

o Alerts

References

8. Cloud-Native Identity
e Authentication and authorization in cloud-native apps
e Azure Active Directory
e |dentityServer for cloud-native applications
¢ Common web app scenarios

o (Getting started

e Configuration
e JavaScript clients
9. Cloud-Native Security
o Azure security for cloud-native apps
e Threat modeling
e Principle of least privilege
e Penetration testing
¢ Monitoring
e Securing the build
e Building secure code
e Built-in security
e Azure network infrastructure
e Role-based access control for restricting access to Azure resources
e Securing secrets
o Azure Key Vault
o Kubernetes
e Encryptionin transit and at rest
e Intransit
e Atrest
e Keeping secure
10. DevOps
e Azure DevOps
e GitHub Actions
e Source control
o Repository per microservice
e Single repository
e Standard directory structure
¢ Task management
e CI/CD pipelines
e Azure Builds

e Azure DevOps releases

o Everybody gets a build pipeline
e Versioning releases
Feature flags
¢ |Implementing feature flags
Infrastructure as code
e Azure Resource Manager templates
e Terraform
e Azure CLI Scripts and Tasks
Cloud Native Application Bundles

DevOps Decisions

