

Spring Boot with Full Stack Design and Development

Pre-requisites: Basic understandings on Java Programming, Spring Framework, Spring

Boot

Duration: 7 days Theory of Contents:

1. Introduction to REST API Principles

Understanding REST Architecture

Principles of REST: Statelessness, client-server separation, uniform interfaces.

HTTP methods: GET, POST, PUT, DELETE, PATCH, and their appropriate use cases.

API design best practices: Resource naming, versioning, and HATEOAS.

2. Building REST APIs with Spring Boot

Setting up a Spring Boot project.

Creating RESTful endpoints and mapping HTTP methods to Java methods. Handling request parameters, path variables, and request bodies.

Error Handling in REST APIs

Custom exception handling in Spring Boot.

Designing standard error responses.

Implementing global exception handling using @ControllerAdvice.

3. Advanced REST API Development

Securing REST APIs

Authentication and Authorization: OAuth2 and JWT basics. Implementing security in Spring Boot using Spring Security.

Protecting APIs from common vulnerabilities (e.g., CSRF, XSS).

Data Serialization and Validation

Using Jackson for JSON serialization and deserialization.

Validating API requests with @Valid and custom annotations.

4. Optimizing REST APIs

Pagination and filtering for large datasets.

Caching responses to improve performance.

Using asynchronous processing for long-running requests.

Testing and Documentation

Writing unit tests for REST APIs using JUnit and Mockito.

Automating API testing with Postman and REST Assured.

Generating API documentation with Swagger/OpenAPI.

5. Introduction to Relational Databases:

Overview of relational database systems

Key concepts: tables, rows, columns, and relationships

Data Integrity Principles:

Understanding data consistency, accuracy, and reliability

Primary keys, foreign keys, and their role in maintaining integrity

Referential integrity and cascading rules

6. Database Schema Artifacts:

Tables and views

Indexes, constraints, and triggers

Entity-relationship (ER) diagrams: visualizing schema design

Schema Design Best Practices:

Normalization: achieving optimal data structure

Denormalization: balancing performance and storage needs Handling complex relationships with joins and constraints

Hands-on Activities:

Designing a database schema for a sample use case

Implementing primary and foreign key constraints

Validating referential integrity using triggers and rules

Common Challenges and Solutions:

Avoiding redundancy and anomalies

Strategies for evolving schemas without compromising data integrity

7. Fundamentals and Strategic Design

Introduction to Domain-Driven Design (DDD):

What is DDD and why it matters?

Understanding domains, subdomains, and bounded contexts

Strategic Design Principles:

Identifying core, supporting, and generic domains

Designing bounded contexts and context mapping

Cultivating collaboration between business and technical teams

8. Tactical Design and Practical Applications

Tactical Design Principles:

Entities, Value Objects, and Aggregates

Domain Events and Repositories

Leveraging factories and application services

Implementing DDD:

Real-world examples of DDD in action

Transitioning from a legacy system to a DDD approach

Common pitfalls and how to avoid them

Hands-on Exercises and Case Studies:

Building a domain model for a sample business scenario

Context mapping workshop to align team understanding

9. Understanding BPMN 2.0 Fundamentals

Overview and importance of BPMN in process modeling.

Key principles and benefits of using BPMN 2.0.

Understanding the BPMN 2.0 standard and its elements.

BPMN Core Components

Basic shapes: Events, activities, and gateways.

Types of events: Start, intermediate, and end events.

Understanding sequence flows and message flows.

Pools, lanes, and collaboration diagrams for team processes.

Building Simple Workflows

Hands-on: Creating your first BPMN diagram.

Best practices for clear and effective process models.

10. Advanced BPMN Techniques and Workflow Creation Advanced BPMN Elements

Sub-processes: Reusable components for complex workflows.

Conditional flows and looping constructs.

Timer, message, and error events.

Workflow Design and Optimization

Creating end-to-end workflows using BPMN notations.

Identifying bottlenecks and inefficiencies in processes.

Designing workflows for automation and scalability.

Practical Applications of BPMN

Case studies: Real-world examples of BPMN workflows.

Hands-on: Building and optimizing a workflow from scratch.

11. Collabortion and Documentation

Using BPMN diagrams for team collaboration.

Documenting processes for stakeholders.

12. Containers

13. Kubernetes

Performance

Scalability - Auto Scaling

14. Cloud Computing

Infrastructure

Cloud Security Fundamentals

15. DevOps

Revision