VMware NSX: Introduction to Routing and Switching

Duration: 2 Days

Course Module

- 1. VMware Virtual Cloud Network and VMware NSX
 - Introduce the VMware Virtual Cloud Network vision
 - Describe the NSX product portfolio
 - Discuss NSX features, use cases, and benefits
 - Explain NSX architecture and components
 - Explain the management, control, data, and consumption planes and their functions.
- 2. Preparing the NSX Infrastructure
 - Deploy VMware NSX[®] ManagerTM nodes on ESXi hypervisors
 - Navigate through the NSX UI
 - Explain data plane components such as N-VDS/VDS, transport nodes, transport zones, profiles, and more
 - Perform transport node preparation and configure the data plane infrastructure
 - Verify transport node status and connectivity
 - Explain DPU-based acceleration in NSX
 - Install NSX using DPUs
 - •
- 3. NSX Logical Switching
 - Introduce key components and terminology in logical switching
 - Describe the function and types of L2 segments
 - Explain tunneling and the Geneve encapsulation
 - Configure logical segments and attach hosts using NSX UI
 - Describe the function and types of segment profiles
 - Create segment profiles and apply them to segments and ports
 - Explain the function of MAC, ARP, and TEP tables used in packet forwarding
 - Demonstrate L2 unicast packet flow
 - Explain ARP suppression and BUM traffic handling
- 4. NSX Logical Routing
 - Describe the logical routing function and use cases
 - Introduce the two-tier routing architecture, topologies, and components
 - Explain the Tier-0 and Tier-1 gateway functions
 - Describe the logical router components: Service Router and Distributed Router
 - Discuss the architecture and function of NSX Edge nodes
 - Discuss deployment options of NSX Edge nodes
 - Configure NSX Edge nodes and create NSX Edge clusters
 - Configure Tier-0 and Tier-1 gateways
 - Examine single-tier and multitier packet flows
 - Configure static routing and dynamic routing, including BGP and OSPF