
Android Open-Source Project (AOSP): Development

Day 1: Introduction to Android and AOSP

Theory

• Overview of the Android Operating System

o History and evolution of Android

o Android architecture and components: Layers from hardware abstraction
to application framework.

• Introduction to the Linux Kernel

o Kernel features and development process

o Legal constraints with device drivers

o Kernel user interface (/proc and /sys)

o Kernel configuration

o Native and cross-compilation

• Introduction to AOSP

o What is AOSP? How it enables custom Android development.

o Differences between AOSP and Android

o AOSP ecosystem and community

• AOSP Directory Structure

o Key directories and their purposes

• Changes Introduced in the Android Kernel

o Functional changes introduced by Google

o Additions to the kernel

o Mainline kernel status of patches

• Detailed Architecture of Android

o From hardware level to application level

• Booting Stages of Android

o In-depth understanding of the booting process(bootloader), kernel, and
user-space initialization.

Lab 1.1

• Setting Up the Development Environment

o Installing Android Studio and SDK

o Cloning the AOSP repository

o Using Android-specific tools

• Hands-on with AOSP Build

o Practice building and running AOSP

o Troubleshooting common build issues

• Using the Android Emulator

o Compile and boot an Android Kernel

o Extract patches from the Android Kernel

Lab 1.2

• Exploring Sandboxing and App Communication

o Create a simple Android app that requests permissions (e.g., location or
camera).

o Analyze app isolation by inspecting /data/data directory.

o Use Binder IPC to fetch data from a system service, such as
LocationManager.

o Inspect the interaction using adb logcat and analyze the logs for Binder
transactions.

Lab 1.3

• Hands-on with Android-Specific Tools
o adb:

▪ Use adb devices to list devices.
▪ Transfer a file to a connected device using adb push.
▪ Inspect logs using adb logcat.

o logcat:
▪ Capture and filter logs for specific tags.

Day 2: Customizing AOSP

Theory

• Customizing the Android System

o Modifying system applications

o Customizing system settings (Customizing the build ID)

• Introduction to Custom ROMs

o Building and modifying custom ROMs

• Android Build System

o Makefile architecture and functions

o Adding a new device to the build system

• Security and Permissions in AOSP

o Understanding and modifying security policies

• Bootloaders

o Bootloader examples and fastboot specifications

• Developing and Debugging with ADB

o File transfers, package installation, logging, and debugging

• AIDL and HIDL Concepts

o Introduction and differences

o Implementation in Android

Lab 2.1

• Hands-on with Android-Specific Tools (Continuation)
o fastboot:

▪ Flash a custom boot image using fastboot flash boot <boot.img>.
o systrace:

▪ Generate a system trace to analyze app performance.
o perf:

▪ Use the perf tool to analyze kernel-level performance.

Lab 2.2

• Customizing System Applications

o Modify system apps and system settings

o Customize boot screens and build IDs

o Rebuild and test on Raspberry Pi

• Adding a Native Library

o Create and integrate an external library

o Test on Android builds

Lab 2.3

• Debugging the Android Platform User Space
o Managed Components Debugging:

▪ Build a simple Android app with a deliberate error.
▪ Use adb logcat and Android Studio debugger to identify and fix the

error.

o Native Debugging:
▪ Write a native library in C/C++ that causes a segmentation fault.
▪ Debug using gdbserver and analyze the core dump.

o Kernel Debugging:

▪ Boot a custom kernel on an emulator.
▪ Use kgdb or inspect kernel logs via dmesg.

Day 3: Extending AOSP

Theory

• Adding New Features to AOSP

o Implementing, testing, and debugging new features

• Android Native Layer

o Understanding Android runtime components

o Exploring hardware abstraction and media framework

• SELinux Policies

o Overview and purpose

o Modifying SELinux policies for custom devices

• HAL and HAL Modifications

o Hardware Abstraction Layer overview

o Customizing and extending HAL

Lab 3.1

• Implementing a New Feature

o Add and test a simple new feature in AOSP

• Using Raspberry Pi

o Boot Android and troubleshoot issues on Raspberry Pi

• Device Development

o Add a new device to the AOSP build system

o Explore daemons handling hardware components

Lab 3.2

• Crash Debugging and Trace Analysis
o Simulate a crash in a native application by triggering a segmentation fault.
o Analyze the crash using:

1. adb logcat for immediate stack traces.

2. Tombstone files (/data/tombstones) for detailed debugging.

o Use symbols from .so files to resolve native traces.
o Experiment with tools like Crashlytics to capture managed crashes.

Lab 3.3

• Media Buffer Passing Between Components
o Implement a basic app that:

▪ Captures video using the Camera API.

▪ Encodes video using MediaCodec.

o Analyze the use of shared memory (Ashmem) for buffer exchange.
o Inspect logs to trace buffer flow through services like AudioFlinger or

MediaCodec.

Day 4: Advanced AOSP Customization and Debugging

Theory

• Advanced Build System Techniques

o Variables and compilation steps

o Customizing the build environment

• Android Filesystem Layout

o Software components installation and importance

• Advanced Debugging with ADB

o Networking, remote commands, and system logs

• HAL, Framework, and Application Interconnection

o Understanding the data flow and integration

• Daemon Services

o Role of daemon services in Android

o Managing and customizing daemon services

• CTS and VTS

o Compatibility Test Suite overview

o Vendor Test Suite and its importance

Lab 4.1

• Advanced System Customization

o Modify "About" info and boot parameters

• Advanced Feature Integration

o Add a feature requiring hardware abstraction

• Final Testing and Debugging

o Full system validation on Raspberry Pi

Lab 4.2

• Deep Dive into IPC and Shared Memory
o Implement a basic Android Service.

▪ Add an AIDL interface for inter-process communication.

▪ Build a client app to interact with the service.

o Experiment with shared memory:

▪ Transfer large data buffers and analyze performance.

o Inspect Binder transactions using the binder debugfs interface.

