Data Analytics and Data Visualization using Python

Course Description

This comprehensive 4-week training program provides an intensive deep dive into data analytics and visualization using Python, with a primary focus on Excel as the data source. Designed for professionals with existing Python programming experience, this course bridges the gap between programming skills and practical data analysis capabilities. Participants will master essential data manipulation techniques using pandas and NumPy, create compelling visualizations with Matplotlib, Seaborn, and Plotly, and gain foundational knowledge of data warehousing concepts. The training includes hands-on experience with extracting data from MS SQL Server and creating interactive dashboards in Tableau, ensuring participants can work effectively across the modern analytics technology stack.

Duration: 4 weeks (20 working days)

Pre-requisites

- Proficiency in Python programming (variables, data types, control structures, functions, and object-oriented programming)
- Basic understanding of data structures (lists, dictionaries, tuples)
- Familiarity with file handling in Python
- Basic knowledge of databases and SQL concepts (beneficial but not mandatory)
- Understanding of basic statistical concepts (mean, median, standard deviation)

Learning Objectives

Upon successful completion of this training, participants will be able to:

- Import, clean, transform, and manipulate data from Excel files using pandas and openpyxl libraries
- Perform comprehensive exploratory data analysis (EDA) to uncover patterns, trends, and insights from datasets
- Apply statistical analysis techniques including descriptive statistics, correlation analysis, and hypothesis testing
- Create professional static and interactive visualizations using Matplotlib, Seaborn, and Plotly

- Understand fundamental data warehousing concepts including ETL processes, dimensional modeling, and OLAP
- Connect to and extract data from MS SQL Server databases using pyodbc
- Integrate Python analytics with Tableau for advanced dashboard development
- Implement data quality checks and handle missing values, duplicates, and outliers effectively
- Automate data analysis workflows and generate reports programmatically
- Apply best practices for reproducible data analysis and documentation

Content Coverage

Module 1: Environment Setup and Excel Data Import

- Setting up Python environment (Anaconda, Jupyter Notebook, VS Code)
- Installing and managing essential libraries (pandas, NumPy, Matplotlib, Seaborn, openpyxl)
- Reading Excel files using pandas (read_excel, ExcelFile, sheet navigation)
- Working with openpyxl for advanced Excel operations (workbook manipulation, cell operations)
- Handling multiple sheets and workbooks programmatically
- Excel file formats and compatibility considerations (xlsx, xls, xlsm)
- Writing data back to Excel with formatting preservation
- Performance optimization techniques for large Excel files

Module 2: Pandas Data Structures - Part 1

- Understanding pandas Series and DataFrame architecture
- Data indexing, selection, and filtering techniques (loc, iloc, boolean indexing)
- Handling different data types and type conversions
- Working with categorical data and encoding techniques
- Practical exercises on data selection and filtering
- Creating DataFrames from various sources
- Understanding DataFrame properties and methods

Module 3: Pandas Data Structures - Part 2

- Data aggregation and grouping operations (groupby, pivot tables, crosstab)
- Merging, joining, and concatenating datasets from multiple sources
- Reshaping data (melt, pivot, stack, unstack)
- Time series data handling and datetime operations
- Advanced groupby operations and multi-level indexing
- Combining multiple datasets for analysis
- Performance considerations for large-scale operations

Module 4: Data Cleaning and Quality Assessment

- Identifying and handling missing values (isna, fillna, dropna, interpolation)
- Detecting and removing duplicate records
- Data validation and quality assessment techniques
- String manipulation and text processing using pandas string methods
- Outlier detection and treatment strategies
- Data profiling and quality metrics
- Creating data quality reports

Module 5: Data Transformation and Feature Engineering

- Data normalization and standardization techniques
- Feature engineering and creating derived columns
- Using apply, map, and lambda functions for custom transformations
- Type conversions and data formatting
- Binning and discretization techniques
- Creating categorical variables from continuous data
- Hands-on project: Complete data cleaning pipeline

Module 6: Exploratory Data Analysis Fundamentals

- Understanding the EDA process and its importance in analytics
- Univariate analysis techniques (distribution analysis, frequency tables)
- Summary statistics using describe, info, and value counts
- Creating data profiling reports
- Identifying data patterns and initial insights
- Documenting EDA findings effectively
- Hands-on exercises with real-world datasets

Module 7: Bivariate and Multivariate Analysis

- Bivariate analysis (scatter plots, correlation matrices, cross-tabulations)
- Multivariate analysis and relationships between multiple variables
- Identifying patterns, trends, and anomalies in data
- · Correlation vs causation understanding
- Creating comprehensive EDA reports
- Analyzing relationships across multiple dimensions
- Case study: Complete EDA workflow

Module 8: Statistical Analysis - Part 1

- Descriptive statistics (mean, median, mode, variance, standard deviation)
- Probability distributions and their applications
- Understanding normal distribution and other common distributions
- Measures of central tendency and dispersion
- Using Python statistics module for basic computations
- Handling skewness and kurtosis in distributions
- Practical statistical analysis with real datasets

Module 9: Statistical Analysis - Part 2

- Correlation analysis (Pearson, Spearman, Kendall coefficients)
- Hypothesis testing fundamentals (t-tests, chi-square tests, ANOVA)
- Confidence intervals and p-value interpretation

- Statistical significance and practical significance
- Using SciPy for advanced statistical computations
- Type I and Type II errors in hypothesis testing
- Hands-on statistical testing exercises

Module 10: Data Visualization with Matplotlib

- Understanding Matplotlib architecture (Figure, Axes, pyplot interface)
- Creating basic plots (line charts, bar charts, scatter plots, histograms)
- Customizing plot elements (colors, markers, line styles, legends)
- Working with subplots and figure layouts
- Annotating and labeling visualizations effectively
- Saving figures in various formats (PNG, PDF, SVG)
- Creating publication-quality static visualizations
- Best practices for choosing appropriate chart types

Module 11: Advanced Visualization with Seaborn

- Understanding Seaborn's statistical plotting capabilities
- Distribution plots (histograms, KDE plots, rug plots, dist plots)
- Categorical plots (bar plots, count plots, box plots, violin plots, swarm plots)
- Relationship plots (scatter plots, line plots, regression plots)
- Customizing Seaborn themes and color palettes
- Creating visually appealing statistical graphics
- Practical exercises with business datasets

Module 12: Seaborn Advanced Features and Multi-dimensional Plots

- Matrix plots (heatmaps, cluster maps, correlation matrices)
- Facet grids and pair plots for multi-dimensional analysis
- Combining Seaborn with Matplotlib for enhanced visualizations
- Creating complex multi-panel visualizations

- Color palette strategies for effective communication
- Styling and theming best practices
- Case study: Creating comprehensive analytical dashboards

Module 13: Interactive Visualizations with Plotly

- Introduction to Plotly and interactive visualization concepts
- Creating interactive charts (scatter, line, bar, bubble, pie charts)
- 3D visualizations and surface plots
- Adding interactivity (hover tooltips, zooming, panning, filtering)
- Creating dashboards with Plotly Express
- Exporting interactive visualizations as HTML files
- Integration considerations for web applications
- Hands-on: Building interactive analytical reports

Module 14: Data Warehousing Fundamentals

- Understanding data warehouse architecture and components
- Core data warehousing concepts (subject-oriented, integrated, time-variant, non-volatile)
- Dimensional modeling principles (Star schema, Snowflake schema)
- Fact tables and dimension tables design patterns
- ETL vs ELT processes and workflows
- OLAP vs OLTP systems and their use cases
- Data marts and their relationship to enterprise data warehouses
- Modern data warehousing trends (cloud data warehouses, data lakehouses)

Module 15: Geographic and Specialized Visualizations

- Geographic visualizations and map-based analytics with Plotly
- Time series visualization techniques
- Financial and business-specific chart types
- Creating dynamic and animated visualizations

- Dashboard design principles and best practices
- Choosing the right visualization for your data story
- Comprehensive visualization project combining all techniques

Module 16: Connecting Python to MS SQL Server - Part 1

- Installing and configuring pyodbc driver for SQL Server connectivity
- Creating connection strings and establishing database connections
- Executing SQL queries from Python and retrieving results
- Parameterized gueries and SQL injection prevention
- Reading SQL query results into pandas DataFrames
- Error handling and connection management best practices
- Hands-on: Extracting data from SQL Server databases

Module 17: Connecting Python to MS SQL Server - Part 2

- Writing DataFrame data to SQL Server tables
- Managing database transactions and connection pooling
- Bulk insert operations for performance optimization
- Creating automated data extraction pipelines
- Combining SQL queries with pandas transformations
- Working with stored procedures from Python
- Case study: Building ETL pipeline from SQL Server to Excel

Module 18: Python and Tableau Integration - Part 1

- Understanding TabPy (Tableau Python Server) architecture
- Installing and configuring TabPy server
- Connecting Tableau Desktop to TabPy
- Creating Python-calculated fields in Tableau
- Passing data between Tableau and Python functions
- Basic analytics integration examples

• Setting up the integration environment

Module 19: Python and Tableau Integration - Part 2

- Implementing custom analytics using Python scripts in Tableau
- Use cases for Python-Tableau integration (advanced statistics, ML predictions)
- Deploying TabPy solutions to Tableau Server
- Performance considerations for Python scripts in Tableau
- Debugging and troubleshooting integration issues
- Creating advanced calculated fields with Python
- Hands-on project: Building Python-enhanced Tableau dashboard

Module 20: Automation, Best Practices, and Final Project

- Automating repetitive data analysis tasks with Python scripts
- Creating reusable functions and modules for analytics workflows
- Generating automated reports with formatted Excel outputs
- Scheduling Python scripts for regular execution
- Version control for analytics code using Git
- Code documentation and commenting best practices
- Creating reproducible analysis pipelines
- Performance optimization and memory management techniques