

Copyright © 2025, Oracle and/or its affiliates.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual property laws. The document may not be modified or altered in any way. Except where your use constitutes "fair use" under copyright law, you may not use, share, download, upload, copy, print, display, perform, reproduce, publish, license, post, transmit, or distribute this document in whole or in part without the express authorization of Oracle.

The information contained in this document is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the documentation on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

Trademark Notice

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Oracle Al Database 26ai has replaced Oracle Database 23ai. This change was announced at Oracle Al World in October 2025. The architecture, concepts, and features presented in this course remain fully relevant to 26ai

Table of Contents

Lesson 1: Overview of Oracle AI Vector Searchs	12
Objectives	13
VECTOR Data Type	14
Vector Embeddings	16
Similarity Search	18
Vector Embedding Models	20
Summary	24
Lesson 2: Why use Oracle AI Vector Search?	26
Objectives	
Benefits	28
Benefits of Oracle AI Vector Search	29
Examples	30
Summary	31
Lesson 3: Oracle AI Vector Search Workflow	32
Objectives	33
Generate Vector Embeddings	
Generate Embeddings Examples	36
Example: Load ONNX Model into the DB	37
Example: Generate the Embedding	3
Store Vector Embeddings	
Vector Indexes	41
Query Data with Similarity Searches	43
The Complete Workflow	45

Summary	46
Lesson 4: Running Basic Queries on Vectors	40
Objectives	
Basic Queries	50
Basic Queries: Comparison Operations	
Demo	55
Summary	56
Lesson 5: Vector Indexes and Memory	58
Objectives	
Vector Indexes	60
Why Do We Need Vector Indexes?	62
Vector Pool	63
In-Memory Neighbor Graph Vector Index (HNSW)	64
Neighbor Partition Vector Index (IVF)	
Creating a Basic Vector Index	66
Important Parameters	67
Comparison	68
Using Vector Indexes	
Monitoring Index Accuracy	70
Important Limitations	71
Best Practices	72
Memory Considerations	73
Vector Storage	, -
Memory Considerations: In-Memory Neighbor Graph Indexes	
Memory Considerations: Sample Calculation	77
Summary	78

Lesson 6: DML Operations on Vectors	80
Objectives	81
Create a Table with a Vector Column	82
VECTOR Data Type	83
Declaration Formats and Explanation	85
Vector DML	86
Vector DML Using SQL*Loader	89
Demo	90
Summary	91
Lesson 7: Vector DDL	92
Objectives	93
Tables with Different Vector Formats	94
Tables with Different Vector Formats: Example	
Tables with Different Vector Formats: Insert Example	97
DDL Operations on Vectors	98
Prohibited Operations	101
VECTOR Data Type Restrictions	102
Demo	104
Summary	105
Lesson 8: Creating and Finding the Nearest Vectors	
Objectives	
Vector Constructor	$oldsymbol{\wedge}$
Vector Constructor Examples	110
Vector Distance	
Vector Distance Operand	
Vector Distance Metrics	113

Euclidean and Euclidean Squared Distances	114
Cosine Similarity	
Dot Product Similarity	116
Manhattan Distance	117
Hamming Similarity	
Vector Distance Examples	
Shorthand Operators For Distances	120
Demo	121
Summary	122
Lesson 9: Finding the Closest Vectors	
Objectives	125
Exact Similarity Search	
Euclidean	129
Euclidean Squared Distance	130
Approximate Similarity Search	131
Approximate Similarity Search or Exact Similarity Search?	133
Approximate Similarity Search	134
Approximate Similarity Search: HNSW	
Approximate Similarity Search: IVF	136
Multi-Vector Similarity Search	137
Demo	140
Summary	
Lesson 10: Narrowing Search Results	142
Objectives	
Attribute Filtering	1 1 1
Demo	153

Summary	154
Lesson 11: Testing Other Distance Functions	156
Objectives	_
Other Distance Functions	
Other Vector Distance Functions	159
L1_DISTANCE	160
L2_DISTANCE	161
COSINE_DISTANCE	162
INNER_PRODUCT	163
Demo	
Summary	165
Lesson 12: Testing Other Vector Functions	166
Objectives	
Other Vector Functions	168
Vector Constructors	170
Vector Serializers	172
Vector Serializers	173
Vector Norm	174
Vector Dimension Count	175
Vector Dimension Format	4-6
Demo	177
Summary	178
Lesson 13: RAG Overview	180
Agenda	181
Agenda Topic	182
Gina has a question:	183

Vector Data Workflow	184
Retrieval Augmented Generation works like this	185
RAG Workflow	189
Interact with your favorite LLM Complete the RAG pipeline	190
Agenda Topic	191
RAG with Oracle AI Vector Search	192
RAG with Oracle AI Vector Search (cont)	
RAG with Oracle AI Vector Search	195
Lesson 14: Using Embedding Models with Oracle AI Vector Search	
Agenda	197
Agenda Topic	198
Embedding Models	199
VECTOR_EMBEDDING()	200
Agenda Topic	201
Create Table	202
Vectorize a Table	203
Similarity Search	204
Change Embedding Models	205
Lesson 15: Oracle Vector Search and OCI Generative AI Service (using Python)	206
Agenda	207
Agenda Topic	208
OCI Gen Service	209
Agenda Topic	210
Summary of Steps	211
Load the sources	212
Text Chunks	213

Vectorize	214
Create and Call	215
Lesson 16: RAG with Oracle AI Vector Search and OCI Gen AI Service (using PL/SQL)	216
Agenda	217
Process Overview	218
Step 1	219
Step 2	220
Step 3	221
Step 4	222
Step 4	223
Step 5: Invoke the Chain	224
Lesson 17: Oracle AI Vector Search Supporting Features	226
Agenda	227
Agenda Topic	228
Exadata: AI Storage	229
Agenda Topic	231
Refresher, some common GoldenGate use cases:	232
still the best choice for an Enterprise Standard	233
GoldenGate Microservices 23ai	234
Distributed AI processing with vector replication	236
Generative AI with your own business data?	237
Create a real-time vector hub for GenAI	238
Actionable AI/ML from streaming pipelines	239
Summary, why GoldenGate 23ai for AI?	240
Agenda Topic	241
SQL Loader	242

Data I unip	243
Lesson 18: Select AI With Autonomous	244
Agenda	245
Select AI - Simplest way to get answers about your business	246
Select AI - Just ask your database	247
Select AI - Benefits	248
Challenges before Select AI	249
Select AI: SQL	250
Agenda Topic	251