
Android App Development using Jetpack Compose 
 

Module 1: Jetpack Compose Basics and Layouts 

• Introduction to Jetpack Compose 

o What is Jetpack Compose? 

o Key differences from XML layouts 

o How Compose simplifies UI development 

• Basic Composables 

o Text, Button, Image, Column, Row, Box 

o Modifiers for styling and layout 

• Layouts in Jetpack Compose 

o ConstraintLayout, LazyColumn, and LazyRow 

o Building responsive UIs with Modifiers 

o Handling multiple screen sizes and density 

▪ Adjusting for different screen sizes and densities with Modifier, 

BoxWithConstraints 

• Lab 1: 

• Build a simple app using basic composables and MVVM for managing state, such 

as a counter app with ViewModel. 

• Implement responsive layouts for different screen sizes. 

 

Module 2: State Management, Theming, and Navigation 

• State Management in Jetpack Compose 

o State in Compose 

o remember, mutableStateOf, and state hoisting 

• Theming in Jetpack Compose 

o Material Design theming in Compose 

o Custom themes: typography, color palettes, and dark mode 

• Navigation in Jetpack Compose 



o Setting up the navigation component 

o Navigating between screens 

o Passing data between composables 

• MVVM Architecture 

o Introduction to Model-View-ViewModel (MVVM) in Android 

o Using ViewModel in Jetpack Compose 

o State handling and LiveData 

• Lab 2: 

• Build a multi-screen app using Jetpack Compose navigation, incorporating MVVM 

and dynamic themes. 

 

Module 3: Handling User Input 

• Handling User Input 

o TextField, Buttons, Switches, and Sliders 

o Form validation and user input management 

• Lab 3: 

• Implement user input forms with validation and basic animations to enhance 

user experience. 

 

Module 4: Animations 

• Animations in Jetpack Compose 

o Simple and complex animations 

o Using AnimatedVisibility, animateFloatAsState, and transitions 

o Advanced Aninmations 

▪ Building custom animations using updateTransition, 

animateContentSize, etc. 

▪ Using keyframes and animation specs for fine-grained control 

• Lab 4: 

• Create a sample app that utilizes various animations: 

• Implement a loading spinner using AnimatedVisibility. 



• Use animateFloatAsState to create a smooth transition effect for a button that 

changes size on press. 

 

Module 5: Networking 

• Networking with Retrofit 

o Performing API requests with Retrofit 

o Displaying remote data in Compose 

o Handling asynchronous data with Coroutines and Flow 

• Lab 5: 

o Build an app that retrieves data from an API, displays it using Compose UI, 

and integrates animations 

 

Module 6: Data Persistence and Advanced State Handling 

• Data Persistence with Room 

o Setting up Room database in Jetpack Compose 

o Performing CRUD operations 

o Integrating Room with ViewModel and LiveData 

• Advanced State Handling 

o Combining State and ViewModel 

o Working with Coroutines and Flow 

o Managing complex states across screens 

 

• Lab 6: 

• Build an app that stores user data in a Room database and Flow to handle 

complex state 

 

Module 7: Localization in Android 

• Introduction to Localization 

o Overview of localization and its importance. 

o Android's localization mechanism: Resources and the res/values directory. 



o Defining language-specific resources (strings, layouts, etc.). 

• Implementing Localization in Android 

o Creating string resources for different languages. 

o Using values-<locale> folders for translations. 

o Loading localized content based on device settings. 

• Lab 7: 

o Create a basic app with string resources in two languages (e.g., English and 

Spanish). 

o Change device language and observe the app's behavior. 

 

Module 8: Unit and UI Testing 

• Unit Testing in Jetpack Compose 

o Introduction to Unit Testing in Android 

o Writing tests for ViewModel and business logic 

o Testing with JUnit and Mockito 

• UI Testing in Jetpack Compose 

o Testing UI components, navigation, and interactions 

• Lab 8: 

• Implement unit tests for ViewModel logic and UI tests for your Compose-based 

app, testing user interactions and navigation. 

 

 


