
Vue JS State Management with Pinia
Prerequisites: Working Knowledge of Vue.JS

Day 1: State Management with Pinia

1. Introduction to State Management

• Importance of State Management in Applications

 Why state management is crucial

 Differences between local state and global state

• Overview of Pinia

 Introduction to Pinia

 Comparison with Vuex

 Pinia Basics

2. State: Understanding the State Object

• What is state?

• Creating a state object in Pinia

• Example: Simple counter state

3. Getters: Accessing and Computing Derived State

• Defining getters

• Using getters for derived state

• Example: Getter to compute double of a counter

4. Mutations: Modifying State

• How to update state

• Example: Mutation to increment the counter

5. Actions: Performing Asynchronous Operations and Complex State Changes

• Role of actions

• Example: Fetching data from an API and updating state

• Advanced Pinia Concepts

6. Modules: Organizing State into Modules for Scalability

• Setting up modules for better scalability

• Example: User authentication module

7. Integrating Pinia with Vue Router: State Management in Routing

• Managing state during navigation

• Example: Storing and accessing route parameters in state

Day 2: Composition API and Composable

1. Introduction to Composition API

• Differences between Composition API and Options API

• Key differences

2. Why the Composition API was Introduced in Vue 3

• Motivations and benefits

• Core Concepts

3. Using Reactive and Ref: Basic Usage and Differences

• Defining reactive and ref

• Example: Creating reactive state and refs

4. Lifecycle Hooks in Composition API: Transitioning from Options API to Composition API

• Lifecycle hooks in Composition API

• Example: Using mounted and unmounted

5. Reactivity in Depth

• Reactivity System Overview: How Vue's Reactivity System Works Under the Hood

• In-depth explanation of Vue's reactivity system

6. Watchers and Computed Properties: Advanced Usage and Best Practices

• Advanced usage and best practices

• Example: Using watchers and computed properties

7. Handling Asynchronous Updates: Managing Async Operations in a Reactive Way

• Managing async updates

• Example: Fetching data from an API

8. Composable

• What is a Composable? Understanding the Concept

• Definition and purpose

9. Composable vs Mixin: Advantages of Composable over Mixins

• Comparison and advantages

• Why Use a Composable?

• Benefits and use cases

