
 

Advanced Linux Programming and Administration 

 

Prerequisites: Familiarity with basic Linux commands and experience with a 

programming language (such as C, Python, or shell scripting) 

Duration: 4 Days (8 Hrs/Day) 

Target Audience: Developers, DevOps engineers, advanced system administrators, 

and IT professionals interested in Linux programming and advanced system 

management. 

 

Course Objective: This advanced course is tailored for developers and IT 

professionals looking to deepen their Linux knowledge. It focuses on programming in 

Linux, managing processes, inter-process communication (IPC), threading, and signal 

handling. The course includes hands-on labs to develop, debug, and optimize programs 

in a Linux environment. 

 

Lab Requirement: Koenig DC 

 

Module 1 - Text Editors and Basic Administration 

Introduction to Text Editors 

 ‘vim’, ‘gedit’, ‘nano’ 

System Administration Basics 

 Rebooting and shutting down 

 Managing software packages (‘apt-get’, ‘yum’, ‘dnf’) 

 Networking basics (‘ifconfig’) 

 Network File System (NFS) 

Monitoring and Performance Tuning 

 Introduction to ‘top’, ‘htop’, ‘iostat’, ‘vmstat’, and system tuning 

Lab: Editing tasks with different text editors 

Lab: Installing and managing software packages 



 
Lab: Configuring basic network settings and monitoring system performance 

 

Module 2 - The Bash Shell and Scripting 

Command history and navigation 

Environmental variables and ‘PATH’ 

Customizing the prompt 

Startup files (‘.profile’, ‘.bashrc’) 

Aliases and basic shell scripting 

Functions in Bash Scripts 

 Writing reusable functions in scripts for modularity 

Lab: Writing and debugging shell scripts 

 

Module 3 - Remote Access and Network Tools 

Secure Shell (SSH) 

File Transfer Protocol (FTP) 

Lab: Connecting to remote servers via SSH 

Lab: Transferring files with FTP and setting up remote desktop access 

 

Module 4 - Programming with Processes, Signals, and Threads 

Programming with Processes 

 ‘getpid()’, ‘getppid()’ 

 Forking and executing processes (fork/exec idiom) 

 Handling process termination (‘wait()’, ‘sigchld’) 

 Managing zombie processes 

Signals 

 Introduction to signal handlers 

 Signal safety and implementation 

 Using ‘kill’, ‘raise’, ‘sigaction’, and ‘sigqueue’ 

 Real-Time Signals 



 
 Implementing real-time signal handling in applications 

 

Module 5 - POSIX Threads (pthreads) 

Thread creation and attributes 

Managing detached threads and thread cancellation 

Using thread-specific data 

Synchronization with mutexes, semaphores, and condition variables 

Lab: Writing C programs for process management 

Lab: Implementing signal handling and real-time signal processing 

 

Module 6 - Inter-Process Communication and Time Management 

Inter-Process Communication (IPC) 

 Pipes and FIFOs 

 POSIX semaphores 

 Message queues 

 Shared memory 

 Sockets (Network & Unix domain) 

Time Management 

 Current time management 

 Real-time and process time 

 Using timers in programs 

 Time Synchronization in Networks 

 Understanding and configuring NTP for time synchronization 

Lab: Implementing IPC mechanisms in programs 

Lab: Working with time and timers, and setting up NTP for network time synchronization 


