
 

Advanced Linux Programming and Administration 

 

Prerequisites: Familiarity with basic Linux commands and experience with a 

programming language (such as C, Python, or shell scripting) 

Duration: 4 Days (8 Hrs/Day) 

Target Audience: Developers, DevOps engineers, advanced system administrators, 

and IT professionals interested in Linux programming and advanced system 

management. 

 

Course Objective: This advanced course is tailored for developers and IT 

professionals looking to deepen their Linux knowledge. It focuses on programming in 

Linux, managing processes, inter-process communication (IPC), threading, and signal 

handling. The course includes hands-on labs to develop, debug, and optimize programs 

in a Linux environment. 

 

Lab Requirement: Koenig DC 

 

Module 1 - Text Editors and Basic Administration 

Introduction to Text Editors 

 ‘vim’, ‘gedit’, ‘nano’ 

System Administration Basics 

 Rebooting and shutting down 

 Managing software packages (‘apt-get’, ‘yum’, ‘dnf’) 

 Networking basics (‘ifconfig’) 

 Network File System (NFS) 

Monitoring and Performance Tuning 

 Introduction to ‘top’, ‘htop’, ‘iostat’, ‘vmstat’, and system tuning 

Lab: Editing tasks with different text editors 

Lab: Installing and managing software packages 



 
Lab: Configuring basic network settings and monitoring system performance 

 

Module 2 - The Bash Shell and Scripting 

Command history and navigation 

Environmental variables and ‘PATH’ 

Customizing the prompt 

Startup files (‘.profile’, ‘.bashrc’) 

Aliases and basic shell scripting 

Functions in Bash Scripts 

 Writing reusable functions in scripts for modularity 

Lab: Writing and debugging shell scripts 

 

Module 3 - Remote Access and Network Tools 

Secure Shell (SSH) 

File Transfer Protocol (FTP) 

Lab: Connecting to remote servers via SSH 

Lab: Transferring files with FTP and setting up remote desktop access 

 

Module 4 - Programming with Processes, Signals, and Threads 

Programming with Processes 

 ‘getpid()’, ‘getppid()’ 

 Forking and executing processes (fork/exec idiom) 

 Handling process termination (‘wait()’, ‘sigchld’) 

 Managing zombie processes 

Signals 

 Introduction to signal handlers 

 Signal safety and implementation 

 Using ‘kill’, ‘raise’, ‘sigaction’, and ‘sigqueue’ 

 Real-Time Signals 



 
 Implementing real-time signal handling in applications 

 

Module 5 - POSIX Threads (pthreads) 

Thread creation and attributes 

Managing detached threads and thread cancellation 

Using thread-specific data 

Synchronization with mutexes, semaphores, and condition variables 

Lab: Writing C programs for process management 

Lab: Implementing signal handling and real-time signal processing 

 

Module 6 - Inter-Process Communication and Time Management 

Inter-Process Communication (IPC) 

 Pipes and FIFOs 

 POSIX semaphores 

 Message queues 

 Shared memory 

 Sockets (Network & Unix domain) 

Time Management 

 Current time management 

 Real-time and process time 

 Using timers in programs 

 Time Synchronization in Networks 

 Understanding and configuring NTP for time synchronization 

Lab: Implementing IPC mechanisms in programs 

Lab: Working with time and timers, and setting up NTP for network time synchronization 


