
Intermediate ABAP Programming 
 

Course DescripƟon: 

The Intermediate ABAP Programming course is designed to build upon your foundaƟonal knowledge of 
ABAP and equip you with advanced skills required for efficient and effecƟve programming within the SAP 
environment. This course delves into more complex aspects of ABAP, including code analysis, 
opƟmizaƟon techniques, advanced data handling, object-oriented programming, and more. By the end 
of this course, you will be capable of wriƟng robust, opƟmized, and maintainable ABAP code, which is 
essenƟal for complex SAP applicaƟons. 

 

Audience Profile: 

This course is ideal for: 

 ABAP developers who have completed basic ABAP training and are looking to enhance their 
skills. 

 SAP professionals involved in the development, tesƟng, or maintenance of ABAP code. 

 Technical consultants who require deeper knowledge of ABAP programming for custom SAP 
soluƟons. 

 

Prerequisites: 

ParƟcipants should have: 

 Basic understanding of ABAP programming. 

 Familiarity with SAP systems and basic data handling within SAP. 

 CompleƟon of a beginner-level ABAP course or equivalent experience. 

 

Course ObjecƟves: 

By the end of this course, parƟcipants will be able to: 

1. Create and manage ATC check variants and perform staƟc code checks. 

2. Implement and execute ABAP unit tests and profile ABAP programs. 

3. Detect and analyze performance boƩlenecks using ABAP Profiling and SQL Trace. 

4. Classify and manage ABAP data types and perform accurate type conversions. 

5. Process character fields, strings, and implement translaƟons within ABAP developments. 



6. OpƟmize ABAP SQL code with code pushdown techniques and advanced SQL funcƟonaliƟes. 

7. Enhance internal table performance with advanced table processing techniques. 

8. Implement effecƟve authorizaƟon checks and manage user access controls within ABAP. 

9. Design and implement object-oriented ABAP code, including inheritance, interfaces, and factory 
methods. 

10. Define and handle excepƟon classes and incorporate robust error-handling mechanisms in ABAP. 

11. Document ABAP code efficiently for beƩer maintainability and knowledge transfer. 

 

Table of Contents: 

 

Unit 1: Analyzing and TesƟng Code 

 Improving Code Quality using ABAP Test Cockpit 

 ImplemenƟng Code Tests with ABAP Unit 

 Measuring RunƟme ConsumpƟon with ABAP Profiling 

 Analyzing Database Access with SQL Trace 

Labs: 

 Create ATC check variants 

 Perform staƟc code checks with ATC 

 Implement a test class 

 Run an ABAP unit test 

 Profile an ABAP program 

 Detect sequenƟal reads using ABAP Profiling 

 Start the SQL trace 

 Analyze SQL trace results 

 

Unit 2: Using Data Types and Type Conversions Correctly 

 Classifying Technical Data Types in ABAP 

 Avoiding the Piƞalls of Type Conversions 

 CalculaƟng with Dates, Times, and Timestamps 



Labs: 

 Classify technical data types in ABAP 

 Avoid the piƞalls of type conversions 

 Calculate with dates, Ɵmes, and Ɵmestamps 

 

Unit 3: Processing Character Fields 

 Using Translatable Text in ABAP 

 Processing Strings Using FuncƟons and Regular Expressions 

Labs: 

 Describe the translaƟon process for ABAP developments 

 Use text elements for making developments translatable 

 Describe built-in string funcƟons in ABAP 

 Work with built-in string funcƟons in ABAP 

 Explain the use of regular expressions in ABAP 

 

Unit 4: Using Code Pushdown in ABAP SQL 

 ImplemenƟng Joins 

 Working with Expressions in ABAP SQL 

 Performing CalculaƟons and String Processing in ABAP SQL 

 Using Special Built-in FuncƟons in ABAP SQL 

 SorƟng and Condensing Data Sets in ABAP SQL 

Labs: 

 Implement joins 

 DifferenƟate between inner joins and outer joins 

 Implement nested joins 

 Use some simple expressions in ABAP SQL 

 Perform calculaƟons on the database 

 Perform string processing on the database 

 Process dates, Ɵmes, and Ɵmestamps on the database 



 Use built-in conversion funcƟons 

 Request sorted result sets from the database 

 Retrieve condensed and aggregated data sets 

 

Unit 5: Improving Internal Table Performance 

 Processing the Contents of Internal Tables 

 Using Field Symbols to Process Internal Tables 

 Working with Sorted and Hashed Tables 

 Improving Internal Table Performance Using Secondary Keys 

Labs: 

 Process the contents of an internal table 

 Process internal tables using field symbols 

 Work with sorted and hashed tables 

 Improve internal table performance using secondary keys 

 

Unit 6: ImplemenƟng AuthorizaƟon Checks 

 Describing the AuthorizaƟon Concept in ABAP 

 Using CDS Access Controls 

 Using the AUTHORITY-CHECK Statement 

Labs: 

 Describe the authorizaƟon concept in ABAP 

 Use CDS access controls 

 Use the AUTHORITY-CHECK statement 

 

Unit 7: Designing EffecƟve Object-Oriented Code 

 ImplemenƟng Inheritance 

 Using Inheritance 

 Defining Interfaces 

 Using Interfaces 



 ImplemenƟng Factory Methods 

Labs: 

 Implement a specialized class 

 Use inheritance 

 Define interfaces 

 Use interfaces 

 Use factory methods 

 

Unit 8: Defining and Working with ExcepƟon Classes 

 Working with ExcepƟon Classes 

 Defining Your Own ExcepƟon Classes 

Labs: 

 Work with excepƟon classes 

 Define your own excepƟon classes 

 

Unit 9: Adding DocumentaƟon to ABAP Code 

 DocumenƟng ABAP Code 

Labs: 

 Document ABAP code 

 


