
Intermediate ABAP Programming 
 

Course DescripƟon: 

The Intermediate ABAP Programming course is designed to build upon your foundaƟonal knowledge of 
ABAP and equip you with advanced skills required for efficient and effecƟve programming within the SAP 
environment. This course delves into more complex aspects of ABAP, including code analysis, 
opƟmizaƟon techniques, advanced data handling, object-oriented programming, and more. By the end 
of this course, you will be capable of wriƟng robust, opƟmized, and maintainable ABAP code, which is 
essenƟal for complex SAP applicaƟons. 

 

Audience Profile: 

This course is ideal for: 

 ABAP developers who have completed basic ABAP training and are looking to enhance their 
skills. 

 SAP professionals involved in the development, tesƟng, or maintenance of ABAP code. 

 Technical consultants who require deeper knowledge of ABAP programming for custom SAP 
soluƟons. 

 

Prerequisites: 

ParƟcipants should have: 

 Basic understanding of ABAP programming. 

 Familiarity with SAP systems and basic data handling within SAP. 

 CompleƟon of a beginner-level ABAP course or equivalent experience. 

 

Course ObjecƟves: 

By the end of this course, parƟcipants will be able to: 

1. Create and manage ATC check variants and perform staƟc code checks. 

2. Implement and execute ABAP unit tests and profile ABAP programs. 

3. Detect and analyze performance boƩlenecks using ABAP Profiling and SQL Trace. 

4. Classify and manage ABAP data types and perform accurate type conversions. 

5. Process character fields, strings, and implement translaƟons within ABAP developments. 



6. OpƟmize ABAP SQL code with code pushdown techniques and advanced SQL funcƟonaliƟes. 

7. Enhance internal table performance with advanced table processing techniques. 

8. Implement effecƟve authorizaƟon checks and manage user access controls within ABAP. 

9. Design and implement object-oriented ABAP code, including inheritance, interfaces, and factory 
methods. 

10. Define and handle excepƟon classes and incorporate robust error-handling mechanisms in ABAP. 

11. Document ABAP code efficiently for beƩer maintainability and knowledge transfer. 

 

Table of Contents: 

 

Unit 1: Analyzing and TesƟng Code 

 Improving Code Quality using ABAP Test Cockpit 

 ImplemenƟng Code Tests with ABAP Unit 

 Measuring RunƟme ConsumpƟon with ABAP Profiling 

 Analyzing Database Access with SQL Trace 

Labs: 

 Create ATC check variants 

 Perform staƟc code checks with ATC 

 Implement a test class 

 Run an ABAP unit test 

 Profile an ABAP program 

 Detect sequenƟal reads using ABAP Profiling 

 Start the SQL trace 

 Analyze SQL trace results 

 

Unit 2: Using Data Types and Type Conversions Correctly 

 Classifying Technical Data Types in ABAP 

 Avoiding the Piƞalls of Type Conversions 

 CalculaƟng with Dates, Times, and Timestamps 



Labs: 

 Classify technical data types in ABAP 

 Avoid the piƞalls of type conversions 

 Calculate with dates, Ɵmes, and Ɵmestamps 

 

Unit 3: Processing Character Fields 

 Using Translatable Text in ABAP 

 Processing Strings Using FuncƟons and Regular Expressions 

Labs: 

 Describe the translaƟon process for ABAP developments 

 Use text elements for making developments translatable 

 Describe built-in string funcƟons in ABAP 

 Work with built-in string funcƟons in ABAP 

 Explain the use of regular expressions in ABAP 

 

Unit 4: Using Code Pushdown in ABAP SQL 

 ImplemenƟng Joins 

 Working with Expressions in ABAP SQL 

 Performing CalculaƟons and String Processing in ABAP SQL 

 Using Special Built-in FuncƟons in ABAP SQL 

 SorƟng and Condensing Data Sets in ABAP SQL 

Labs: 

 Implement joins 

 DifferenƟate between inner joins and outer joins 

 Implement nested joins 

 Use some simple expressions in ABAP SQL 

 Perform calculaƟons on the database 

 Perform string processing on the database 

 Process dates, Ɵmes, and Ɵmestamps on the database 



 Use built-in conversion funcƟons 

 Request sorted result sets from the database 

 Retrieve condensed and aggregated data sets 

 

Unit 5: Improving Internal Table Performance 

 Processing the Contents of Internal Tables 

 Using Field Symbols to Process Internal Tables 

 Working with Sorted and Hashed Tables 

 Improving Internal Table Performance Using Secondary Keys 

Labs: 

 Process the contents of an internal table 

 Process internal tables using field symbols 

 Work with sorted and hashed tables 

 Improve internal table performance using secondary keys 

 

Unit 6: ImplemenƟng AuthorizaƟon Checks 

 Describing the AuthorizaƟon Concept in ABAP 

 Using CDS Access Controls 

 Using the AUTHORITY-CHECK Statement 

Labs: 

 Describe the authorizaƟon concept in ABAP 

 Use CDS access controls 

 Use the AUTHORITY-CHECK statement 

 

Unit 7: Designing EffecƟve Object-Oriented Code 

 ImplemenƟng Inheritance 

 Using Inheritance 

 Defining Interfaces 

 Using Interfaces 



 ImplemenƟng Factory Methods 

Labs: 

 Implement a specialized class 

 Use inheritance 

 Define interfaces 

 Use interfaces 

 Use factory methods 

 

Unit 8: Defining and Working with ExcepƟon Classes 

 Working with ExcepƟon Classes 

 Defining Your Own ExcepƟon Classes 

Labs: 

 Work with excepƟon classes 

 Define your own excepƟon classes 

 

Unit 9: Adding DocumentaƟon to ABAP Code 

 DocumenƟng ABAP Code 

Labs: 

 Document ABAP code 

 


