
Learn more from Oracle University at education.oracle.com

Oracle Database 23ai:
Administration Workshop

Student Guide

S1106066GC10

Copyright © 2023, Oracle and/or its affiliates.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual property laws. The
document may not be modified or altered in any way. Except where your use constitutes "fair use" under copyright law,
you may not use, share, download, upload, copy, print, display, perform, reproduce, publish, license, post, transmit, or
distribute this document in whole or in part without the express authorization of Oracle.

The information contained in this document is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the documentation on behalf of the
United States Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer
documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer
software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system,
integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations
specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle
cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Trademark Notice

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This documentation may provide access to or information about content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect
to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and
Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

1012202023

iii

Contents

I Oracle Database 23c: Administration Workshop – Course Overview

Target Audience I-2

Prerequisites I-3

Learning Outcomes I-4

Course Outline I-6

What’s Next? I-8

1 Introduction to Oracle Database

Objectives 1-2

Oracle Database Server Architecture: Overview 1-3

Oracle Database Instance Configurations 1-4

Oracle Multitenant Container Database: Introduction 1-5

Oracle Multitenant Container Database: Architecture 1-7

Oracle Database Memory Structures 1-8

Shared Pool 1-10

Database Buffer Cache 1-12

Redo Log Buffer 1-13

Large Pool 1-14

Java Pool and Streams Pool 1-15

Program Global Area (PGA) 1-16

Process Architecture 1-17

Process Structures 1-18

Database Writer Process (DBWn) 1-20

Log Writer Process (LGWR) 1-22

Checkpoint Process (CKPT) 1-24

System Monitor Process (SMON) 1-25

Process Monitor Process (PMON) 1-26

Recoverer Process 1-27

Archiver Processes (ARCn) 1-28

Database Sharding: Introduction 1-29

Oracle Database Server: Interactive Architecture Diagram 1-30

Summary 1-31

iv

2 Accessing an Oracle Database

Objectives 2-2

Connecting to an Oracle Database Instance 2-3

Oracle Database Tools 2-5

Database Tool Choices 2-7

SQL*Plus 2-8

Oracle SQL Developer 2-10

Oracle SQL Developer: Connections 2-11

Oracle SQL Developer: DBA Actions 2-12

Database Configuration Assistant (DBCA) 2-13

Oracle Enterprise Manager Database Express 2-14

Enterprise Manager Cloud Control 13c Features 2-16

Oracle Enterprise Manager Component Overview 2-18

Single Pane of Glass for Enterprise Management 2-19

Oracle Enterprise Manager Database Management 2-20

Summary 2-22

3 Creating an Oracle Database by Using DBCA

Objectives 3-2

Planning the Database 3-3

Choosing a Database Template 3-4

Choosing the Appropriate Character Set 3-5

How are character sets used? 3-7

Setting NLS_LANG Correctly on the Client 3-8

Using the Database Configuration Assistant 3-9

Using DBCA in Silent Mode 3-10

Summary 3-11

4 Creating an Oracle Database by Using a SQL Command

Objectives 4-2

Creating a Container Database (CDB) 4-3

Creating a CDB by Using a SQL Command: Example 4-4

Using the SEED FILE_NAME_CONVERT Clause 4-5

Using the ENABLE PLUGGABLE DATABASE Clause 4-6

Summary 4-7

5 Starting Up and Shutting Down a Database Instance

Objectives 5-2

Starting the Oracle Database Instance 5-3

Shutting Down an Oracle Database Instance 5-4

Comparing SHUTDOWN Modes 5-6

v

Opening and Closing PDBs 5-8

Configuring PDBs to Automatically Open 5-9

Summary 5-10

6 Managing Database Instances

Objectives 6-2

Working with Initialization Parameters 6-3

Initialization Parameters 6-5

Modifying Initialization Parameters 6-7

Viewing Initialization Parameters 6-10

Working with the Automatic Diagnostic Repository 6-12

Automatic Diagnostic Repository 6-13

Viewing the Alert Log 6-14

Using Trace Files 6-16

Administering the DDL Log File 6-18

Querying Dynamic Performance Views 6-20

Considerations for Dynamic Performance Views 6-22

Data Dictionary: Overview 6-23

Querying the Oracle Data Dictionary 6-24

Summary 6-26

7 Oracle Net Services: Overview

Objectives 7-2

Connecting to the Database Instance 7-3

Oracle Net Services: Overview 7-4

Defining Oracle Net Services Components 7-5

Tools for Configuring and Managing Oracle Net Services 7-6

Oracle Net Listener: Overview 7-7

The Default Listener 7-8

Comparing Dedicated and Shared Server Architecture 7-9

Summary 7-10

8 Configuring Naming Methods

Objectives 8-2

Establishing Oracle Network Connections 8-3

Connecting to an Oracle Database Instance 8-4

Name Resolution 8-5

Establishing a Connection 8-6

User Sessions 8-7

Naming Methods 8-8

Easy Connect 8-9

vi

Local Naming 8-10

Directory Naming 8-11

Using Database Services to Manage Workloads 8-12

Creating Database Services 8-13

Summary 8-14

9 Configuring and Administering the Listener

Objectives 9-2

Review: Oracle Net Services Overview 9-3

Oracle Net Listener: Overview 9-4

The Default Listener 9-5

Configuring Dynamic Service Registration 9-6

Configuring Static Service Registration 9-8

Summary 9-10

10 Configuring a Shared Server Architecture

Objectives 10-2

Shared Server Architecture: Overview 10-3

Comparing Dedicated and Shared Server Architecture: Review 10-4

Enabling Shared Server 10-5

Controlling Shared Server Operations 10-6

SGA and PGA Usage 10-7

Shared Server Configuration Considerations 10-8

Summary 10-9

Practice Overview 10-10

11 Creating PDBs from Seed

Objectives 11-2

Provisioning New Pluggable Databases 11-3

Tools 11-4

Creating a New PDB from PDB$SEED 11-5

Using the FILE_NAME_CONVERT Clause 11-6

Using OMF or the PDB_FILE_NAME_CONVERT Parameter 11-7

Summary 11-8

12 Using Other Techniques to Create PDBs

Objectives 12-2

Cloning Regular PDBs 12-3

Migrating Data from a Non-CDB into a CDB 12-4

Plugging a Non-CDB into CDB Using DBMS_PDB 12-5

Replicating a Non-CDB into a CDB by Using GoldenGate 12-6

 vii

Cloning a Non-CDB or Remote PDB 12-7

Using DBCA to Clone a Remote PDB 12-8

Plugging an Unplugged Regular PDB into CDB 12-9

Plugging in a PDB Using an Archive File 12-10

Cloning Remote PDBs in Hot Mode 12-11

Near-Zero Downtime PDB Relocation 12-12

Using DBCA to Relocate a Remote PDB 12-14

Proxy PDB: Query Across CDBs Proxying Root Replica 12-15

Creating a Proxy PDB 12-16

Summary 12-17

13 Managing PDBs

Objectives 13-2

Changing the PDB Mode 13-3

Modifying PDB Settings 13-4

Impact of Changing Initialization Parameters 13-5

Changing Initialization Parameters: Example 13-6

Using the ALTER SYSTEM Command in a PDB 13-7

Configuring Host Name and Port Number per PDB 13-8

Dropping PDBs 13-9

Summary 13-10

14 Database Storage Overview

Objectives 14-2

Database Storage Architecture 14-3

Logical and Physical Database Structures 14-5

Segments, Extents, and Blocks 14-7

Tablespaces and Data Files 14-8

Default Tablespaces in a Multitenant Container Database 14-9

SYSTEM and SYSAUX Tablespaces 14-10

Types of Segments 14-11

How Table Data Is Stored 14-12

Database Block Content 14-13

Understanding Deferred Segment Creation 14-14

Controlling Deferred Segment Creation 14-15

Monitoring Tablespace Space Usage 14-16

Summary 14-17

15 Creating and Managing Tablespaces

Objectives 15-2

Creating Tablespaces 15-3

viii

Creating a Tablespace: Clauses 15-4

Creating Permanent Tablespaces in a CDB 15-7

Defining Default Permanent Tablespaces 15-8

Temporary Tablespaces 15-9

Altering and Dropping Tablespaces 15-10

Viewing Tablespace Information 15-12

Implementing Oracle Managed Files (OMF) 15-13

Enlarging the Database 15-15

Moving or Renaming Online Data Files 15-16

Examples: Moving and Renaming Online Data Files 15-17

Summary 15-18

16 Improving Space Usage

Objectives 16-2

Space Management Features 16-3

Block Space Management 16-4

Row Chaining and Migration 16-5

Free Space Management Within Segments 16-6

Allocating Extents 16-7

Using Unusable Indexes 16-8

Using Temporary Tables 16-9

Creating Global Temporary Tables 16-10

Creating Private Temporary Tables 16-11

Table Compression: Overview 16-12

Table Compression: Concepts 16-13

Compression for Direct-Path Insert Operations 16-14

Advanced Row Compression for DML Operations 16-15

Specifying Table Compression 16-16

Using the Compression Advisor 16-17

Resolving Space Usage Issues 16-18

Reclaiming Space by Shrinking Segments 16-19

Shrinking Segments 16-20

Results of a Shrink Operation 16-21

Managing Resumable Space Allocation 16-22

Using Resumable Space Allocation 16-23

Resuming Suspended Statements 16-25

What operations are resumable? 16-27

Summary 16-28

 ix

17 Managing Undo Data

Objectives 17-2

Undo Data: Overview 17-3

Transactions and Undo Data 17-5

Storing Undo Information 17-6

Comparing Undo Data and Redo Data 17-7

Managing Undo 17-8

Comparing SHARED Undo Mode and LOCAL Undo Mode 17-9

Configuring Undo Retention 17-10

Categories of Undo 17-11

Guaranteeing Undo Retention 17-12

Changing an Undo Tablespace to a Fixed Size 17-13

Temporary Undo: Overview 17-14

Temporary Undo Benefits 17-15

Enabling Temporary Undo 17-16

Monitoring Temporary Undo 17-17

Summary 17-18

18 Creating and Managing User Accounts

Objectives 18-2

Database User Accounts 18-3

Oracle-Supplied Administrator Accounts 18-5

Creating Oracle Database Users in a Multitenant Environment 18-6

Creating Common Users in the CDB and PDBs 18-7

Creating Schema-Only Accounts 18-8

Authenticating Users 18-9

Using Password Authentication 18-11

Using Password File Authentication 18-13

Using OS Authentication 18-14

OS Authentication for Privileged Users 18-16

Assigning Quotas 18-17

Summary 18-20

19 Configuring Privilege and Role Authorization

Objectives 19-2

Privileges 19-3

System Privileges 19-4

System Privileges for Administrators 19-6

Schema-Level Privileges 19-7

New Developer Role and Simplified Schema Privileges 19-13

Object Privileges 19-14

 x

Granting Privileges in a Multitenant Environment 19-15

Granting Privileges: Example 19-16

Using Roles to Manage Privileges 19-17

Assigning Privileges to Roles and Assigning Roles to Users 19-18

Oracle-Supplied Roles 19-19

Granting Roles in a Multitenant Environment 19-20

Granting Roles: Example 19-21

Making Roles More Secure 19-22

Revoking Roles and Privileges 19-23

Granting and Revoking System Privileges 19-24

Granting and Revoking Object Privileges 19-25

 Summary 19-26

20 Configuring User Resource Limits

Objectives 20-2

Profiles and Users 20-3

Creating Profiles in a Multitenant Architecture 20-4

Creating Profiles: Example 20-5

Profile Parameters: Resources 20-6

Profile Parameters: Locking and Passwords 20-9

Oracle-Supplied Password Verification Functions 20-12

Assigning Profiles in a Multitenant Architecture 20-13

Summary 20-14

21 Implementing Oracle Database Auditing

Objectives 21-2

Database Security 21-3

Monitoring for Compliance 21-5

Types of Activities to be Audited 21-6

Mandatorily Audited Activities 21-7

Understanding Auditing Implementation 21-8

Administering the Roles Required for Auditing 21-9

Database Auditing: Overview 21-10

Configuring Auditing 21-11

Creating a Unified Audit Policy 21-12

Creating an Audit Policy: Systemwide Audit Options 21-13

Creating an Audit Policy: Object-Specific Actions 21-14

Creating an Audit Policy: Specifying Conditions 21-15

Enabling and Disabling Audit Policies 21-16

Auditing Actions in the CDB and PDBs 21-17

Modifying a Unified Audit Policy 21-19

xi

Auditing Top-Level Statements Only 21-20

Viewing Audit Policy Information 21-21

Value-Based Auditing 21-22

Fine-Grained Auditing 21-24

FGA Policy 21-25

Audited DML Statements: Considerations 21-27

FGA Guidelines 21-28

Archiving and Purging the Audit Trail 21-29

Purging Audit Trail Records 21-30

Summary 21-31

22 Introduction to Loading and Transporting Data

Objectives 22-2

Moving Data: General Architecture 22-3

Oracle Data Pump: Overview 22-4

Oracle Data Pump: Benefits 22-5

SQL Loader: Overview 22-7

Summary 22-9

23 Loading Data

Objectives 23-2

SQL Loader: Review 23-3

Creating the SQL*Loader Control File 23-4

SQL*Loader Loading Methods 23-6

Protecting Against Data Loss 23-7

SQL*Loader Express Mode 23-8

Using SQL*Loader to Load a Table in a PDB 23-9

Summary 23-10

24 Transporting Data

Objectives 24-2

Data Pump Export and Import Clients 24-3

Data Pump Interfaces and Modes 24-4

Data Pump Import Transformations 24-6

Using Oracle Data Pump with PDBs 24-7

Exporting from a Non-CDB and Importing into a PDB 24-8

Exporting and Importing Between PDBs 24-9

Full Transportable Export/Import 24-10

Full Transportable Export/Import: Example 24-12

Transporting a Database Over the Network: Example 24-13

Using RMAN to Transport Data Across Platforms 24-14

 xii

RMAN CONVERT Command 24-15

Transporting Data with Minimum Down Time 24-16

Transporting a Tablespace by Using Image Copies 24-17

Determining the Endian Format of a Platform 24-18

Transporting Data with Backup Sets 24-19

Transporting a Tablespace 24-20

Transporting Inconsistent Tablespaces 24-22

Summary 24-23

25 Using External Tables to Load and Transport Data

Objectives 25-2

External Tables 25-3

External Tables: Benefits 25-4

ORACLE_LOADER Access Driver 25-5

ORACLE_DATAPUMP Access Driver 25-6

External Tables 25-7

Viewing Information About External Tables 25-8

Summary 25-9

Practice Overview 25-10

26 Automated Maintenance Tasks: Overview

Objectives 26-2

Proactive Database Maintenance Infrastructure 26-3

Automated Maintenance Tasks: Components 26-4

Predefined Automated Maintenance Tasks 26-6

Maintenance Windows 26-8

Predefined Maintenance Windows 26-9

Automated Maintenance Tasks 26-10

Summary 26-11

27 Automated Maintenance Tasks: Managing Tasks and Windows

Objectives 27-2

Configuring Automated Maintenance Tasks 27-3

Enabling and Disabling Maintenance Tasks 27-4

Creating and Managing Maintenance Windows 27-5

Resource Allocations for Automated Maintenance Tasks 27-6

Changing Resource Allocations for Maintenance Tasks 27-7

Summary 27-8

Practice Overview 27-9

xiii

28 Database Monitoring and Tuning Performance Overview

Objectives 28-2

Performance Management Activities 28-3

Performance Planning Considerations 28-4

Database Maintenance 28-6

Automatic Workload Repository (AWR) 28-7

Automatic Database Diagnostic Monitor (ADDM) 28-8

Configuring Automatic ADDM Analysis at the PDB Level 28-9

Advisory Framework 28-10

Performance Tuning Methodology 28-12

Summary 28-13

29 Monitoring Database Performance

Objectives 29-2

Server-Generated Alerts 29-3

Setting Metric Thresholds 29-4

Reacting to Alerts 29-5

Alert Types and Clearing Alerts 29-6

Database Server Statistics and Metrics 29-7

Performance Monitoring 29-8

Viewing Statistics Information 29-9

Monitoring Wait Events 29-11

Monitoring Sessions 29-12

Monitoring Services 29-13

Summary 29-14

30 Analyzing SQL and Optimizing Access Paths

Objectives 30-2

SQL Tuning Process 30-3

Oracle Optimizer 30-4

Optimizer Statistics 30-5

Optimizer Statistics Collection 30-6

Setting Optimizer Statistics Preferences 30-8

Optimizer Statistics Advisor 30-10

Optimizer Statistics Advisor Report 30-11

Executing Optimizer Statistics Advisor Tasks 30-12

SQL Plan Directives 30-13

Adaptive Execution Plans 30-14

SQL Tuning Advisor: Overview 30-16

SQL Access Advisor: Overview 30-18

SQL Performance Analyzer: Overview 30-19

xiv

Managing Automated Tuning Tasks 30-21

Summary 30-22

Oracle Database 23c: Administration Workshop

Course Overview

Target Audience

Database
Architects

Database
Administrators

Developers

Oracle Database 23c: Administration Workshop I - 2

➢ Familiarity with computers

➢ Basic understanding of databases

Prerequisites

Oracle Database 23c: Administration Workshop I - 3

Learning Outcomes

Explain Oracle Database
memory and processes

Configure listener and
naming methods to

establish connections
to database

Create and manage tablespaces
and optimize UNDO tablespace

Create and manage a database Create and manage PDBs

Oracle Database 23c: Administration Workshop I - 4

Learning Outcomes

Create and manage users and
roles

Monitor database and SQL
performance and tune database

performance

Transport and load data
between databases

Configure and manage
automated maintenance tasks

Determine audit requirements,
create audit policies, and

review audit results

Oracle Database 23c: Administration Workshop I - 5

Course Outline

➢ Database Connections
➢ Oracle Net Services
➢ Configuring Naming Methods
➢ Configuring and Administering the Listener
➢ Configuring a Shared Server

➢ Creating and Managing PDBs
➢ Creating PDBs from Seed
➢ Other Techniques to Create PDBs
➢ Managing PDBs

➢ Database Creation, Management & Parameters
➢ Using DBCA for Database Creation
➢ Using SQL for Database Creation
➢ Starting and Shutting Down a Database
➢ Managing a Database Instance

➢ Storage, Tablespaces, Space Management & UNDO
➢ Database Storage Overview
➢ Creating and Managing Tablespaces
➢ Improving Space Usage
➢ Managing Undo Data

➢ Database Introduction, Architecture & Tools
➢ Oracle Database Architecture
➢ Accessing an Oracle Database
➢ Database Tools

Oracle Database 23c: Administration Workshop I - 6

Course Outline

➢ Loading and Transporting Data
➢ Introduction to Loading and Transporting Data
➢ Loading Data
➢ Transporting Data
➢ Using External Tables

➢ Implementing Oracle Database Auditing
➢ Understanding Auditing
➢ Configuring Auditing

➢ Database Management & Performance Overview
➢ Automated Maintenance Tasks
➢ Managing Tasks and Windows
➢ Monitoring Database Performance
➢ Analyzing SQL and Optimizing Access Paths

➢ User Creation and Management
➢ Creating and Managing User Accounts
➢ Configuring Privileges and Role Authorization
➢ Configuring User Resource Limits

Oracle Database 23c: Administration Workshop I - 7

What’s Next?

Oracle Database
Administration 2023

Certified Professional
Credential

Oracle Database 23c: Backup and Recovery

Oracle Database 23c: Administration Workshop I - 8

Let’s get started!

Oracle Database 23c: Administration Workshop I - 9

Introduction to Oracle Database

Objectives

Describe multitenant architecture

List the major architectural components of Oracle Database

Explain memory structures

Describe database sharding

Define process architecture

Oracle Database 23c: Administration Workshop 1 - 2

Oracle Database Server Architecture: Overview

Database (Storage Structures)

Instance

Memory Structures

(System Global Area)

Processes

Client

Server

Server
process

User
process

PGA

There are three major structures in Oracle Database server architecture: memory structures, processes,

and storage structures. A basic Oracle Database system consists of an Oracle database and a database

instance.

The database consists of both physical structures and logical structures. Because the physical and logical

structures are separate, the physical storage of data can be managed without affecting access to logical

storage structures.

The instance consists of memory structures and background processes associated with that instance.

Every time an instance is started, a shared memory area called the System Global Area (SGA) is allocated,

and the background processes are started. Processes are jobs that work in the memory of computers. A

process is defined as a “thread of control” or a mechanism in an operating system that can run a series of

steps. After starting a database instance, the Oracle software associates the instance with a specific

database. This is called mounting the database. The database is then ready to be opened, which makes it

accessible to authorized users.

Oracle Database 23c: Administration Workshop 1 - 3

Each database instance is associated with only one database. If there are multiple databases on the same

server, then there is a separate and distinct database instance for each database. A database instance

cannot be shared. An Oracle Real Applications Cluster (RAC) database usually has multiple instances on

separate servers for the same shared database. In this model, the same database is associated with each

RAC instance, which meets the requirement that, at most, only one database is associated with an

instance.

Oracle Database Instance Configurations

Nonclustered System

I1

I2

Local Storage

I1 I2 I3

Clustered System

Shared Storage

D1

D2

D

Oracle Database 23c: Administration Workshop 1 - 4

Oracle Multitenant Container Database: Introduction

• Container: A logical collection of data or metadata within the multitenant

architecture

• Pluggable database (PDB): A portable collection of schemas, schema objects, and

nonschema objects

• Containers in a multitenant container database (CDB):

‒ CDB root container (also known as the root)

‒ System container (includes the root and all PDBs)

‒ Application containers

‒ Root PDB

‒ User-created PDBs

At the physical level, the multitenant container database (CDB) has a database instance and database

files, just as a noncontainer database does.

A CDB avoids redundancy of:

• Background processes

• Memory allocation

• Oracle metadata in several data dictionaries

A CDB grouping several applications has one instance, one set of background processes, one SGA

allocation, and one data dictionary in the root container, common for all PDBs, each PDB maintaining its

own application data dictionary.

When applications need to be patched or upgraded, the maintenance operation is performed only once

on the CDB, and consequently, all applications are updated at the same time.

Oracle Database 23c: Administration Workshop 1 - 5

Oracle Multitenant Container Database: Introduction

• All pluggable databases share:

‒ Background processes

‒ Shared memory management and some memory structures

‒ Some of the Oracle metadata

At the physical level, the multitenant container database (CDB) has a database instance and database

files, just as a noncontainer database does.

A CDB avoids redundancy of:

• Background processes

• Memory allocation

• Oracle metadata in several data dictionaries

A CDB grouping several applications has one instance, one set of background processes, one SGA

allocation, and one data dictionary in the root container, common for all PDBs, each PDB maintaining its

own application data dictionary.

When applications need to be patched or upgraded, the maintenance operation is performed only once

on the CDB, and consequently, all applications are updated at the same time.

Oracle Database 23c: Administration Workshop 1 - 6

Oracle Multitenant Container Database: Architecture

Server

Instance

CDB

Single database shares:

• Background processes

• Shared/process memory

• Oracle metadata

• Redo log files

• Control files

• Undo tablespace

Instance

PDBid2 PDBid3 PDBid4 PDBid2 PDBid4

System Global Area

Process Structures

Redo Log
files

Control
files

CDB root
Data
files

PDB seed SALES PDB HR PDB
Data files Data files Data files

You can design your database to be a multitenant container database (CDB). A CDB, as illustrated in the

slide, is made up of one root container, one seed pluggable database (seed PDB), and one or more user-

created pluggable databases (simply referred to as PDBs). To a user or application, PDBs appear logically

as separate databases.

• The root container, named CDB$ROOT, contains multiple data files. The data files store Oracle-

supplied metadata and common users (users that are known in every container). This information

is shared with all PDBs.

• The seed PDB, named PDB$SEED, is a system-supplied PDB template containing multiple data

files that you can use to create new PDBs.

• The user-created PDB contains multiple data files that contain the data and code required to

support an application (for example, a Human Resources application). Users interact only with the

PDBs, and not the seed PDB or root container. For example, in the slide, there are two PDBs—one

for the sales organization (named SALES) and another for the Human Resources department

(named HR). You can create multiple PDBs in a CDB. One of the goals of the multitenant

architecture is that each PDB has a one-to-one relationship with an application.

Oracle Database 23c: Administration Workshop 1 - 7

Oracle Database creates and uses memory structures for various purposes. For example, memory stores

program code being run, data that is shared among users, and private data areas for each connected

user.

Two basic memory structures are associated with an instance:

• System Global Area (SGA): Group of shared memory structures, known as SGA components, that

contain data and control information for one Oracle Database instance. The SGA is shared by all

server and background processes. Examples of data stored in the SGA include cached data blocks

and shared SQL areas.

• Program Global Areas (PGA): Memory regions that contain data and control information for a

server or background process. A PGA is nonshared memory created by Oracle Database when a

server or background process is started. Access to the PGA is exclusive to the server process. Each

server process and background process has its own PGA.

Oracle Database Memory Structures

Shared pool
Database

buffer
cache

Redo log
buffer

Streams
poolLarge pool Java pool

Stack

Space

System Global Area (SGA)

Program Global Area (PGA)

KEEP buffer
pool

RECYCLE
buffer pool

nK buffer
cache

User

Global

Area

Stack

Space

User

Global

Area

PGA

Server
process 2

Server
process 1

Oracle Database 23c: Administration Workshop 1 - 8

The SGA is the memory area that contains data and control information for the instance. The SGA

includes the following data structures:

• Shared pool: Caches various constructs that can be shared among users

• Database buffer cache: Caches blocks of data retrieved from the database

• KEEP buffer pool: A specialized type of database buffer cache that is tuned to retain blocks of

data in memory for long periods of time

• RECYCLE buffer pool: A specialized type of database buffer cache that is tuned to recycle or

remove block from memory quickly

• nK buffer cache: One of several specialized database buffer caches designed to hold block sizes

different than the default database block size

• Redo log buffer: Caches redo information (used for instance recovery) until it can be written to

the physical redo log files stored on the disk

• Large pool: Optional area that provides large memory allocations for certain large processes, such

as Oracle backup and recovery operations, and I/O server processes

• Java pool: Used for all session-specific Java code and data in the Java Virtual Machine (JVM)

• Streams pool: Used by Oracle Streams to store information required by capture and apply

When you start the instance by using Enterprise Manager or SQL*Plus, the amount of memory allocated

for the SGA is displayed.

A Program Global Area (PGA) is a memory region that contains data and control information for each

server process. An Oracle server process services a client’s requests. Each server process has its own

private PGA that is allocated when the server process is started. Access to the PGA is exclusive to that

server process, and the PGA is read and written only by the Oracle code acting on its behalf. The PGA is

divided into two major areas: stack space and the user global area (UGA).

With the dynamic SGA infrastructure, the sizes of the database buffer cache, the shared pool, the large

pool, the Java pool, and the Streams pool can change without shutting down the instance.

Oracle Database uses initialization parameters to create and manage memory structures. The simplest

way to manage memory is to allow the database to automatically manage and tune it for you. To do so

(on most platforms), you only have to set a target memory size initialization parameter (MEMORY_TARGET)

and a maximum memory size initialization parameter (MEMORY_MAX_TARGET).

Oracle Database 23c: Administration Workshop 1 - 9

The shared pool portion of the SGA contains the library cache, the data dictionary cache, the SQL query

result cache, the PL/SQL function result cache, buffers for parallel execution messages, and control

structures.

The data dictionary is a collection of database tables and views containing reference information about

the database, its structures, and its users. Oracle Database accesses the data dictionary frequently during

SQL statement parsing. This access is essential to the continuing operation of Oracle Database.

The data dictionary is accessed so often by Oracle Database that two special locations in memory are

designated to hold dictionary data. One area is called the data dictionary cache, also known as the row

cache because it holds data as rows instead of buffers (which hold entire blocks of data). The other area

in memory to hold dictionary data is the library cache. All Oracle Database user processes share these

two caches for access to data dictionary information.

Oracle Database represents each SQL statement that it runs with a shared SQL area (as well as a private

SQL area kept in the PGA). Oracle Database recognizes when two users are executing the same SQL

statement and reuses the shared SQL area for those users.

Shared pool
Database

buffer
cache

Redo log
buffer

Streams
poolLarge pool Java pool

System Global Area (SGA)

KEEP buffer
pool

RECYCLE
buffer pool

nK buffer
cache

Shared Pool

• Is a portion of the SGA

• Contains:

‒ Library cache

– Shared SQL area

‒ Data dictionary cache

‒ Control structures

Shared
SQL area

Library

cache

Data dictionary
cache

Other

Fixed area

Oracle Database 23c: Administration Workshop 1 - 10

A shared SQL area contains the parse tree and execution plan for a given SQL statement. Oracle Database

saves memory by using one shared SQL area for SQL statements running multiple times, which often

happens when many users run the same application.

When a new SQL statement is parsed, Oracle Database allocates memory from the shared pool to store in

the shared SQL area. The size of this memory depends on the complexity of the statement.

Oracle Database processes PL/SQL program units (procedures, functions, packages, anonymous blocks,

and database triggers) in much the same way it processes individual SQL statements. Oracle Database

allocates a shared area to hold the parsed, compiled form of a program unit. Oracle Database allocates a

private area to hold values specific to the session that runs the program unit, including local, global, and

package variables (also known as package instantiation) and buffers for executing SQL. If more than one

user runs the same program unit, then a single, shared area is used by all users, while all users maintain

separate copies of their own private SQL areas, holding values specific to their own sessions.

Individual SQL statements contained in a PL/SQL program unit are processed just like other SQL

statements. Despite their origins in a PL/SQL program unit, these SQL statements use a shared area to

hold their parsed representations and a private area for each session that runs the statement.

The SQL query result cache and PL/SQL function result cache are new to Oracle Database 23c. They

share the same infrastructure, appear in the same dynamic performance (V$) views, and are administered

using the same supplied package.

Results of queries and query fragments can be cached in memory in the SQL query result cache. The

database can then use cached results to answer future executions of these queries and query fragments.

Because retrieving results from the SQL query result cache is faster than rerunning a query, frequently

run queries experience a significant performance improvement when their results are cached.

A PL/SQL function is sometimes used to return the result of a computation whose inputs are one or

several parameterized queries issued by the function. In some cases, these queries access data that

changes very infrequently compared to the frequency of calling the function. You can include syntax in

the source text of a PL/SQL function to request that its results be cached in the PL/SQL function result

cache and (to ensure correctness) that the cache be purged when tables in a list of tables experience

DML.

The fixed area of the shared pool represents startup overhead for the SGA. It is very small in comparison

to a typically sized shared pool or SGA.

Oracle Database 23c: Administration Workshop 1 - 11

The database buffer cache is the portion of the SGA that holds block images read from the data files or

constructed dynamically to satisfy the read consistency model. All users who are concurrently connected

to the instance share access to the database buffer cache.

The first time an Oracle Database user process requires a particular piece of data, it searches for the data

in the database buffer cache. If the process finds the data already in the cache (a cache hit), it can read

the data directly from memory. If the process cannot find the data in the cache (a cache miss), it must

copy the data block from a data file on disk into a buffer in the cache before accessing the data.

Accessing data through a cache hit is faster than data access through a cache miss.

The buffers in the cache are managed by a complex algorithm that uses a combination of least recently

used (LRU) lists and touch count. The LRU helps to ensure that the most recently used blocks tend to stay

in memory to minimize disk access.

The KEEP buffer pool and the RECYCLE buffer pool are used for specialized buffer pool tuning. The KEEP

buffer pool is designed to retain buffers in memory longer than the LRU would normally retain them. The

RECYCLE buffer pool is designed to flush buffers from memory faster than the LRU would normally do so.

Additional buffer caches can be configured to hold blocks of a size different than the default block size.

Shared pool
Database

buffer
cache

Redo log
buffer

Streams
poolLarge pool Java pool

System Global Area (SGA)

KEEP buffer
pool

RECYCLE
buffer pool

nK buffer
cache

Database Buffer Cache

• Is part of the SGA

• Holds copies of data blocks that are read from data files

• Is shared by all concurrent users

Oracle Database 23c: Administration Workshop 1 - 12

The redo log buffer is a circular buffer in the SGA that holds information about changes made to the

database. This information is stored in redo entries. Redo entries contain the information necessary to

reconstruct (or redo) changes that are made to the database by DML, DDL, or internal operations. Redo

entries are used for database recovery if necessary.

As the server process makes changes to the buffer cache, redo entries are generated and written to the

redo log buffer in the SGA. The redo entries take up continuous, sequential space in the buffer. The log

writer background process writes the redo log buffer to the active redo log file (or group of files) on disk.

Redo Log Buffer

• Is a circular buffer in the SGA

• Holds information about changes made to the database

• Contains redo information

‒ Changes made by DML and DDL

Shared pool
Database

buffer
cache

Streams
poolLarge pool Java pool

System Global Area (SGA)

KEEP buffer
pool

RECYCLE
buffer pool

nK buffer
cache

Redo log
buffer

Oracle Database 23c: Administration Workshop 1 - 13

The database administrator can configure an optional memory area called the large pool to provide large

memory allocations for:

• Session memory for the shared server and the Oracle XA interface (used where transactions

interact with multiple databases)

• I/O server processes

• Oracle Database backup and restore operations

• Parallel Query operations

• Advanced Queuing memory table storage

By allocating session memory from the large pool for shared server, Oracle XA, or parallel query buffers,

Oracle Database can use the shared pool primarily for caching shared SQL and avoid the performance

overhead that is caused by shrinking the shared SQL cache.

In addition, the memory for Oracle Database backup and restore operations, for I/O server processes, and

for parallel buffers is allocated in buffers of a few hundred kilobytes. The large pool is better able to

satisfy such large memory requests than the shared pool.

The large pool is not managed by a least recently used (LRU) list.

Shared pool
Database

buffer
cache

Redo log
buffer

Streams
poolLarge pool Java pool

System Global Area (SGA)

KEEP buffer
pool

RECYCLE
buffer pool

nK buffer
cache

Large Pool

• Provides large memory allocations for:

‒ Session memory for the shared server

‒ I/O server processes

‒ Oracle Database backup and restore operations

Large pool

I/O buffer

Response
queue

Request
queue

Free

memory

Parallel query

Advanced
queuing

Oracle Database 23c: Administration Workshop 1 - 14

Java pool memory is used to store all session-specific Java code and data in the JVM. Java pool memory

is used in different ways, depending on the mode in which Oracle Database is running.

The Streams pool is used exclusively by Oracle Streams. The Streams pool stores buffered queue

messages, and it provides memory for Oracle Streams capture processes and apply processes.

Unless you specifically configure it, the size of the Streams pool starts at zero. The pool size grows

dynamically as needed when Oracle Streams is used.

Note: A detailed discussion of Java programming and Oracle Streams is beyond the scope of this class.

Shared pool
Database

buffer
cache

Redo log
buffer

Streams
poolLarge pool Java pool

System Global Area (SGA)

KEEP buffer
pool

RECYCLE
buffer pool

nK buffer
cache

Java Pool and Streams Pool

• Java pool memory is used to store all session-specific Java code and data in the

JVM.

• Streams pool memory is used exclusively by Oracle Streams to:

‒ Store buffered queue messages

‒ Provide memory for Oracle Streams processes

Java pool Streams pool

Oracle Database 23c: Administration Workshop 1 - 15

The Program Global Area (PGA) is a private memory region containing data and control information for a

server process. Each server process has a distinct PGA. Access to it is exclusive so that the server process

is read only by Oracle code acting on behalf of it. It is not available for developer's code.

Every PGA contains stack space. In a dedicated server environment, each user connecting to the database

instance has a separate server process. For this type of connection, the PGA contains a subdivision of

memory known as the user global area (UGA). The UGA is composed of the following:

• Cursor area for storing runtime information on cursors

• User session data storage area for control information about a session

• SQL working areas for processing SQL statements consisting of:

– A sort area for functions that order data such as ORDER BY and GROUP BY

– A hash area for performing hash joins of tables

– A create bitmap area used in bitmap index creation common to data warehouses

– A bitmap merge area used for resolving bitmap index plan execution

In a shared server environment, multiple client users share the server process. In this model, the UGA is

moved into the SGA (shared pool or large pool if configured) leaving the PGA with only stack space.

Program Global Area (PGA)

Server
process 1

Stack

Space

System Global Area (SGA)

PGA

Shared pool
Database

buffer
cache

Redo log
buffer

Streams
poolLarge pool Java pool

KEEP buffer
pool

RECYCLE
buffer pool

nK buffer
cache

User

Global

Area

User Session
Data

Cursor

State

Sort Area Hash
Area

Create Bitmap Area

SQL

Working Areas

Bitmap Merge Area

Oracle Database 23c: Administration Workshop 1 - 16

Process Architecture

• User process

‒ Is the application or tool that connects to the Oracle database

• Database processes

‒ Server process: Connects to the Oracle instance and is started when a user

establishes a session

‒ Background processes: Are started when an Oracle instance is started

• Daemon/Application processes

‒ Networking listeners

‒ Grid infrastructure daemons

The processes in an Oracle database system can be divided into three major groups:

• User processes that run the application or Oracle tool code

• Oracle Database processes that run the Oracle database server code (including server processes

and background processes)

• Oracle daemons and application processes not specific to a single database

When a user runs an application program or an Oracle tool such as SQL*Plus, the term user process is

used to refer to the user’s application. The user process may or may not be on the database server

machine. Oracle Database also creates a server process to execute the commands issued by the user

process. In addition, the Oracle server also has a set of background processes for an instance that

interact with each other and with the operating system to manage the memory structures,

asynchronously perform I/O to write data to disk, and perform other required tasks. The process

structure varies for different Oracle Database configurations, depending on the operating system and the

choice of Oracle Database options. The code for connected users can be configured as a dedicated server

or a shared server.

• Dedicated server: For each session, the database application is run by a user process that is

served by a dedicated server process that executes Oracle database server code.

• Shared server: Eliminates the need for a dedicated server process for each connection. A

dispatcher directs multiple incoming network session requests to a pool of shared server

processes. A shared server process serves any client request.

Oracle Database 23c: Administration Workshop 1 - 17

Server Processes

Oracle Database creates server processes to handle the requests of user processes connected to the

instance. The user process represents the application or tool that connects to the Oracle database. It may

be on the same machine as the Oracle database, or it may exist on a remote client and utilize a network to

reach the Oracle database. The user process first communicates with a listener process that creates a

server process in a dedicated environment.

Server processes created on behalf of each user’s application can perform one or more of the following:

• Parse and run SQL statements issued through the application

• Read necessary data blocks from data files on disk into the shared database buffers of the SGA (if

the blocks are not already present in the SGA)

• Return results in such a way that the application can process the information

Background Processes

To maximize performance and accommodate many users, a multiprocess Oracle Database system uses

some additional Oracle Database processes called background processes. An Oracle Database instance

can have many background processes.

Process Structures

PMONSMON

Others

Instances (ASM and Database separate)

RECO

ARCn

DBWn LGWRCKPT

PGA

Background processes

System Global Area (SGA)

Required:

ASMB RBALOptional:

Grid Infrastructure Processes

(ASM and Oracle Restart)

orarootagent

ohas ocssd diskmon

oraagent cssdagent

User
process

Server
process

Listener

Oracle Database 23c: Administration Workshop 1 - 18

The background processes commonly seen in non-RAC, non-ASM environments can include the

following:

• Database writer process (DBWn)

• Log writer process (LGWR)

• Checkpoint process (CKPT)

• System monitor process (SMON)

• Process monitor process (PMON)

• Recoverer process (RECO)

• Job queue coordinator (CJQ0)

• Job slave processes (Jnnn)

• Archiver processes (ARCn)

• Queue monitor processes (QMNn)

Other background processes may be found in more advanced configurations such as RAC. See the

V$BGPROCESS view for more information on the background processes.

Some background processes are created automatically when an instance is started, whereas others are

started as required.

Other process structures are not specific to a single database, but rather can be shared among many

databases on the same server. The Grid Infrastructure and networking processes fall into this category.

Oracle Grid Infrastructure processes on Linux and UNIX systems include the following:

• ohasd: Oracle High Availability Service daemon that is responsible to starting Oracle Clusterware

processes

• ocssd: Cluster Synchronization Service daemon

• diskmon: Disk Monitor daemon that is responsible for input and output fencing for HP Oracle

Exadata Storage Server

• cssdagent: Starts, stops, and checks the status of the CSS daemon, ocssd

• oraagent: Extend clusterware to support Oracle-specific requirements and complex resources

• orarootagent: A specialized Oracle agent process that helps manage resources owned by root,

such as the network.

Note: For a more detailed list of the background processes, please consult the Oracle Background

Processes appendix in this course or the Oracle Database Reference guide.

Oracle Database 23c: Administration Workshop 1 - 19

The Database Writer process (DBWn) writes the contents of buffers to data files. The DBWn processes are

responsible for writing modified (dirty) buffers in the database buffer cache to disk. Although one

Database Writer process (DBW0) is adequate for most systems, you can configure additional processes

(DBW1 through DBW9 and DBWa through DBWz) to improve write performance if your system modifies

data heavily. These additional DBWn processes are not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked dirty and is added to the head of the

checkpoint queue that is kept in SCN order. This order therefore matches the order of redo that is written

to the redo logs for these changed buffers. When the number of available buffers in the buffer cache falls

below an internal threshold (to the extent that server processes find it difficult to obtain available buffers),

DBWn writes non frequently used buffers to the data files from the tail of the LRU list so that processes

can replace buffers when they need them. DBWn also writes from the tail of the checkpoint queue to keep

the checkpoint advancing.

Oracle Database 23c: Administration Workshop 1 - 20

Database Writer Process (DBWn)

• Writes modified (dirty) buffers in the database buffer cache to disk:

‒ Asynchronously while performing other processing

‒ To advance the checkpoint

Database buffer cache Database writer
process

Data files

DBWn

The SGA contains a memory structure that has the redo byte address (RBA) of the position in the redo

stream where recovery should begin in the case of an instance failure. This structure acts as a pointer into

the redo and is written to the control file by the CKPT process once every three seconds. Because the

DBWn writes dirty buffers in SCN order, and because the redo is in SCN order, every time DBWn writes

dirty buffers from the LRUW list, it also advances the pointer held in the SGA memory structure so that

instance recovery (if required) begins reading the redo from approximately the correct location and

avoids unnecessary I/O. This is known as incremental checkpointing.

Note: There are other cases when DBWn may write (for example, when tablespaces are made

read-only or are placed offline). In such cases, no incremental checkpoint occurs because dirty buffers

belonging only to the corresponding data files are written to the database unrelated to the SCN order.

The LRU algorithm keeps more frequently accessed blocks in the buffer cache to minimize disk reads. A

CACHE option can be placed on tables to help retain block even longer in memory.

The DB_WRITER_PROCESSES initialization parameter specifies the number of DBWn processes. The

maximum number of DBWn processes is 36. If it is not specified by the user during startup, Oracle

Database determines how to set DB_WRITER_PROCESSES based on the number of CPUs and processor

groups.

The DBWn process writes dirty buffers to disk under the following conditions:

• When a server process cannot find a clean reusable buffer after scanning a threshold number of

buffers, it signals DBWn to write. DBWn writes dirty buffers to disk asynchronously while

performing other processing.

• DBWn writes buffers to advance the checkpoint, which is the position in the redo thread (log) from

which instance recovery begins. This log position is determined by the oldest dirty buffer in the

buffer cache.

In all cases, DBWn performs batched (multiblock) writes to improve efficiency. The number of blocks

written in a multiblock write varies by operating system.

Oracle Database 23c: Administration Workshop 1 - 21

The Log Writer process (LGWR) is responsible for redo log buffer management by writing the redo log

buffer entries to a redo log file on disk. LGWR writes all redo entries that have been copied into the buffer

since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the redo log buffer to a redo

log file, server processes can then copy new entries over the entries in the redo log buffer that have been

written to disk. LGWR normally writes fast enough to ensure that space is always available in the buffer

for new entries, even when access to the redo log is heavy. LGWR writes one contiguous portion of the

buffer to disk.

LGWR writes:

• When a user process commits a transaction

• When the redo log buffer is one-third full

• Before a DBWn process writes modified buffers to disk (if necessary)

• Every three seconds

Log Writer Process (LGWR)

• Writes the redo log buffer to a redo log file on disk

• Writes:

‒ When a user process commits a transaction

‒ When the redo log buffer is one-third full

‒ Before a DBWn process writes modified buffers to disk

‒ Every three seconds

Redo log buffer Log Writer process Redo log files

LGWR

Oracle Database 23c: Administration Workshop 1 - 22

Before DBWn can write a modified buffer, all redo records that are associated with the changes to the

buffer must be written to disk (the write-ahead protocol). If DBWn finds that some redo records have not

been written, it signals LGWR to write the redo records to disk and waits for LGWR to complete writing the

redo log buffer before it can write out the data buffers. LGWR writes to the current log group. If one of the

files in the group is damaged or unavailable, LGWR continues writing to other files in the group and logs

an error in the LGWR trace file and in the system alert log. If all files in a group are damaged, or if the

group is unavailable because it has not been archived, LGWR cannot continue to function.

When a user issues a COMMIT statement, LGWR puts a commit record in the redo log buffer and writes it

to disk immediately, along with the transaction’s redo entries. The corresponding changes to data blocks

are deferred until it is more efficient to write them. This is called a fast commit mechanism. The atomic

write of the redo entry containing the transaction’s commit record is the single event that determines

whether the transaction has committed. Oracle Database returns a success code to the committing

transaction, although the data buffers have not yet been written to disk.

If more buffer space is needed, LGWR sometimes writes redo log entries before a transaction is

committed. These entries become permanent only if the transaction is later committed. When a user

commits a transaction, the transaction is assigned a system change number (SCN), which Oracle

Database records along with the transaction’s redo entries in the redo log. SCNs are recorded in the redo

log so that recovery operations can be synchronized in Real Application Clusters and distributed

databases.

In times of high activity, LGWR can write to the redo log file by using group commits. For example,

suppose that a user commits a transaction. LGWR must write the transaction’s redo entries to disk. As this

happens, other users issue COMMIT statements. However, LGWR cannot write to the redo log file to

commit these transactions until it has completed its previous write operation. After the first transaction’s

entries are written to the redo log file, the entire list of redo entries of waiting transactions (not yet

committed) can be written to disk in one operation, requiring less I/O than do transaction entries handled

individually. Therefore, Oracle Database minimizes disk I/O and maximizes performance of LGWR. If

requests to commit continue at a high rate, every write (by LGWR) from the redo log buffer can contain

multiple commit records.

Oracle Database 23c: Administration Workshop 1 - 23

A checkpoint is a data structure that defines a system change number (SCN) in the redo thread of a

database. Checkpoints are recorded in the control file and in each data file header. They are a crucial

element of recovery.

When a checkpoint occurs, Oracle Database must update the headers of all data files to record the details

of the checkpoint. This is done by the CKPT process. The CKPT process does not write blocks to disk;

DBWn always performs that work. The SCNs recorded in the file headers guarantee that all changes made

to database blocks prior to that SCN have been written to disk.

Checkpoint Process (CKPT)

• Records checkpoint information in

‒ Control file

‒ Each data file header

Checkpoint
process

Data files

Control fileCKPT

Oracle Database 23c: Administration Workshop 1 - 24

The System Monitor process (SMON) performs recovery at instance startup if necessary. SMON is also

responsible for cleaning up temporary segments that are no longer in use. If any terminated transactions

were skipped during instance recovery because of file-read or offline errors, SMON recovers them when

the tablespace or file is brought back online.

SMON checks regularly to see whether the process is needed. Other processes can call SMON if they

detect a need for it.

System Monitor Process (SMON)

• Performs recovery at instance startup

• Cleans up unused temporary segments

Instance

Temporary
segment

System Monitor
process

SMON

Oracle Database 23c: Administration Workshop 1 - 25

The Process Monitor process (PMON) performs process recovery when a user process fails. PMON is

responsible for cleaning up the database buffer cache and freeing resources that the user process was

using. For example, it resets the status of the active transaction table, releases locks, and removes the

process ID from the list of active processes.

PMON periodically checks the status of dispatcher and server processes, and restarts any that have

stopped running (but not any that Oracle Database has terminated intentionally). PMON also registers

information about the instance and dispatcher processes with the network listener.

Like SMON, PMON checks regularly to see whether it is needed; it can be called if another process detects

the need for it.

Process Monitor Process (PMON)

• Performs process recovery when a user process fails

‒ Cleans up the database buffer cache

‒ Frees resources that are used by the user process

• Monitors sessions for idle session timeout

• Dynamically registers database services with listeners

Process Monitor
process

Database buffer
cache

Failed user process

User

PMON

Server
process

tnslsnr

Oracle Database 23c: Administration Workshop 1 - 26

Recoverer Process (RECO)

The Recoverer process (RECO) is a background process that is used with the distributed database

configuration that automatically resolves failures involving distributed transactions. The RECO process of

an instance automatically connects to other databases involved in an in-doubt distributed transaction.

When the RECO process reestablishes a connection between involved database servers, it automatically

resolves all in-doubt transactions, removing from each database’s pending transaction table any rows

that correspond to the resolved in-doubt transactions.

If the RECO process fails to connect with a remote server, RECO automatically tries to connect again after

a timed interval. However, RECO waits an increasing amount of time (growing exponentially) before it

attempts another connection.

Recoverer Process

• Used with the distributed database configuration

• Automatically connects to other databases involved in in-doubt distributed

transactions

• Automatically resolves all in-doubt transactions

• Removes any rows that correspond to in-doubt transactions

Recoverer process
in database A

In-doubt transaction
in database B

RECO

Oracle Database 23c: Administration Workshop 1 - 27

The archiver processes (ARCn) copy redo log files to a designated storage device after a log switch has

occurred. ARCn processes are present only when the database is in ARCHIVELOG mode and automatic

archiving is enabled.

If you anticipate a heavy workload for archiving (such as during bulk loading of data), you can increase

the maximum number of archiver processes. There can also be multiple archive log destinations. It is

recommended that there be at least one archiver process for each destination. The default is to have four

archiver processes.

Archiver Processes (ARCn)

• Copy redo log files to a designated storage device after a log switch has occurred

• Can collect transaction redo data and transmit that data to standby destinations

Archiver process Archive destination Copies of redo log
files

ARCn

Oracle Database 23c: Administration Workshop 1 - 28

Sharding is a data tier architecture where data is horizontally partitioned across independent databases.

Each database in such a configuration is called a shard. All shards together make up a single logical

database, which is referred to as a sharded database or SDB.

Horizontal partitioning involves splitting a database table across shards so that each shard contains the

table with the same columns but a different subset of rows. The diagram in the slide shows an unsharded

table on the left with the rows represented by different colors. On the right, the same table data is shown

horizontally partitioned across three shards or independent databases. Each partition of the logical table

resides in a specific shard. We refer to such a table as a sharded table.

Sharding is a shared-nothing database architecture because shards do not share physical resources such

as CPU, memory, or storage devices. Shards are also loosely coupled in terms of software; they do not run

clusterware.

From a database administrator’s perspective, an SDB consists of multiple databases that can be managed

either collectively or individually. However, from an application developer’s perspective, an SDB looks like

a single database: the number of shards and the distribution of data across them are completely

transparent to database applications.

Database Sharding: Introduction

• A shared-nothing architecture for scalability and availability

• Horizontally partitioned data across independent databases

• Loosely coupled data tier without clusterware

Unsharded table in 1 database

Sharded table in 3 databases

Server
Server A Server B Server C

Sharded Database (SDB)

Oracle Database 23c: Administration Workshop 1 - 29

Oracle Database Server: Interactive Architecture Diagram

Access the Interactive Architecture Diagram on the

Oracle Help Center Oracle Database “What’s New” page.

https://tinyurl.com/yyepn9ma

Oracle Database 23c: Administration Workshop 1 - 30

Describe multitenant architecture

List the major architectural components of Oracle Database

Explain memory structures

Describe database sharding

Define process architecture

Summary

Oracle Database 23c: Administration Workshop 1 - 31

Accessing an Oracle Database

Objectives

Describe the tools used to access Oracle Database

Connect to Oracle Database

Oracle Database 23c: Administration Workshop 2 - 2

Connections Compared with Sessions

You connect client applications to database instances (not databases).

A connection is the physical communication pathway between a client process and a database instance.

A user session is a logical entity that represents the state of the current user login to the database

instance. A session lasts from the time the user is authenticated by the database instance until the time

the user disconnects or exits the client application.

Connecting to CDBs by Using Operating System Authentication

As a database administrator, you can quickly start SQL*Plus and connect to a root container without a

password by using the $ sqlplus / as sysdba command. This command enables you to connect to

the database as the SYS user with the SYSDBA privilege. There are some rules: You must be on the same

machine as the database instance, and the current operating system user must be a member of the

privileged OSDBA group.

Connecting to PDBs by Using the Easy Connect Syntax

There are many ways to connect to a PDB; however, using the Easy Connect syntax in SQL*Plus is the

easiest because it's already enabled on the database server by default and doesn't require any client-side

configuration. This syntax supports TCP protocol only (no SSL). It offers no support for advanced

connection options such as connect-time failover, source routing, and load balancing.

Connecting to an Oracle Database Instance

• You connect client applications to an Oracle Database by connecting to its database

instance, not its database.

• A user session is a logical entity that represents the state of the current user login to

the database instance.

• Examples of connecting to an Oracle Database instance:

‒ By using operating system authentication

‒ By using Easy Connect Syntax

$ sqlplus / as sysdba

SQL> connect hr/hr@host1.example.com:1521/db.example.com

Oracle Database 23c: Administration Workshop 2 - 3

Easy Connect connection strings take the following form:

SQL> CONNECT <username>/<password>@<listener hostname>:<listener port>/<service

name>

For example, the SYSTEM user requests a connection to the database service named db.example.com.

The listener is located on a machine named host01.example.com and listens on port 1521.

SQL> CONNECT hr/hr@host1.example.com:1521/db.example.com

If you're starting from a command prompt, you can start SQL*Plus and log in at the same time:

$ sqlplus hr/hr@host1.example.com:1521/db.example.com

The listener port and service name are optional. If the listener port is not provided, Oracle Net assumes

that the default port of 1521 is being used. If the service name is not provided, Oracle Net assumes that

the database service name and host name provided in the connect string are identical. For example,

assuming that the listener uses TCP to listen on port 1521, the connection string above can be shortened.

For example, a connection string like this:

SQL> CONNECT hr/hr@db.example.com:1521/db.example.com

...can be shortened to:

SQL> CONNECT hr/hr@ db.example.com

Disconnecting from the Database Instance

Use the EXIT command to exit SQL*Plus, disconnect from the database instance, and end all sessions in

the database instance memory.

Oracle Database 23c: Administration Workshop 2 - 4

mailto:hr/hr@host1.example.com:1521/db.example.com
mailto:hr/hr@host1.example.com:1521/db.example.com

Oracle Database includes the following tools:

• SQL*Plus: Use this command-line tool to access a database.

• SQL Developer: Use this graphical user interface (GUI) tool to access a database and perform DBA

actions.

• SQL Developer Command Line (SQLcl): Use this tool to access a database.

• Database Configuration Assistant (DBCA): Use this GUI tool to create databases. To use DBCA,

you must be on the server to launch the tool from the operating system that houses the CDB.

• Oracle Enterprise Manager Database Express (EM Express): Use this GUI tool to perform

database administration tasks on one database instance at a time.

• Oracle Enterprise Manager Cloud Control (EM Cloud Control): Use this GUI tool to perform

database administration tasks on several targets (database instances, listeners, and so on) at the

same time.

• Oracle Management Cloud Database Express (OMX): Use this GUI to perform database

administration tasks. OMX is a replacement for EM Express with a subset of functionality in the

initial release.

• Others: Many specialized utilities are used to assist with database administration. The ones used

in this course may include Listener Control (lsnrctl), Oracle Net Configuration Assistant

(netca), Oracle Net Manager (netmgr), ADR Command Interpreter (adcri), SQL*Loader

(sqlldr), Oracle Data Pump Import (impdp), and Oracle Data Pump Export (expdp). This list does

not cover all the utilities available.

Oracle Database Tools

• Oracle Database tools each have their own purpose, and some operations can be

performed in more than one tool.

• Choosing a tool for a task often comes down to personal preference.

• Tools include:

‒ SQL*Plus

‒ SQL Developer

‒ SQL Developer Command Line (SQLcl)

‒ Database Configuration Assistant (DBCA)

‒ Oracle Enterprise Manager Database Express (EM Express)

Oracle Database 23c: Administration Workshop 2 - 5

Oracle Database includes the following tools:

• SQL*Plus: Use this command-line tool to access a database.

• SQL Developer: Use this graphical user interface (GUI) tool to access a database and perform DBA

actions.

• SQL Developer Command Line (SQLcl): Use this tool to access a database.

• Database Configuration Assistant (DBCA): Use this GUI tool to create databases. To use DBCA,

you must be on the server to launch the tool from the operating system that houses the CDB.

• Oracle Enterprise Manager Database Express (EM Express): Use this GUI tool to perform

database administration tasks on one database instance at a time.

• Oracle Enterprise Manager Cloud Control (EM Cloud Control): Use this GUI tool to perform

database administration tasks on several targets (database instances, listeners, and so on) at the

same time.

• Oracle Management Cloud Database Express (OMX): Use this GUI to perform database

administration tasks. OMX is a replacement for EM Express with a subset of functionality in the

initial release.

• Others: Many specialized utilities are used to assist with database administration. The ones used

in this course may include Listener Control (lsnrctl), Oracle Net Configuration Assistant

(netca), Oracle Net Manager (netmgr), ADR Command Interpreter (adcri), SQL*Loader

(sqlldr), Oracle Data Pump Import (impdp), and Oracle Data Pump Export (expdp). This list does

not cover all the utilities available.

Oracle Database Tools

‒ Oracle Enterprise Manager Cloud Control

‒ Oracle Management Cloud Database Express (OMX)

‒ Others such as Listener Control, Oracle Net Configuration Assistant, Oracle Net

Manager, ADR Command Interpreter, SQL*Loader, Oracle Data Pump Import, and

Oracle Data Pump Export

Oracle Database 23c: Administration Workshop 2 - 6

The table shows you at a glance which tool can be used to perform which tasks.

Database Tool Choices

Topic SQL*Plus
SQL
Developer

SQLcl DBCA
EM
Database
Express

EM
Cloud
Control

Oracle
Universal
Installer

Create a CDB
or PDB

Yes
Yes (PDB

only)
Yes Yes

Yes (PDB
only)

Yes
(PDB
only)

Yes

Explore CDB
instance,
architecture,
and PDBs

Yes Yes Yes No Yes Yes No

Oracle Database 23c: Administration Workshop 2 - 7

SQL*Plus

SQL*Plus is a command-line program that you use to submit SQL and PL/SQL statements to an Oracle

database. SQL*Plus is installed with Oracle Database and is located in the $ORACLE_HOME/bin directory.

You can start SQL*Plus from the command line or from the Start menu on a Windows client. Use the

SQL*Plus command-line interface to execute SQL*Plus, SQL, and PL/SQL commands to perform the

following:

• Enter, edit, run, store, retrieve, and save SQL commands and PL/SQL blocks

• Format, calculate, store, and print query results

• List column definitions for any table

• Send messages to and accept responses from an end user

• Perform database administration

Calling a SQL Script from SQL*Plus

When calling a SQL script file from within SQL*Plus, you have the following options:

• Option 1: Call the script from the command line when you first invoke SQL*Plus:

$ sqlplus hr/hr@HRPDB @script.sql

• Option 2: Call the script from inside a SQL*Plus session simply by using the “@” operator:

SQL> @script.sql

When a script is saved from SQL*Plus by using the SAVE command, the .sql extension is automatically

supplied. You can then execute the script without supplying the extension at execution time, for example:

SQL> @script

SQL*Plus

• Example 1: From a command line, you can start SQL*Plus, log in, and show the user

that you're logged in as:

• Example 2: Call a SQL script from the command line:

$ sqlplus / as sysdba

...

SQL> show user

USER is "SYS"

$ sqlplus hr/hr@HRPDB @script.sql

File name

Connect identifier

Username and
password

Oracle Database 23c: Administration Workshop 2 - 8

Calling SQL*Plus from a Shell Script

You can call SQL*Plus from a shell script or BAT file by invoking sqlplus and using the operating

system scripting syntax for passing parameters. For example, suppose you have the following shell script:

Name of this file: batch_sqlplus.sh

Count employees and give raise.

sqlplus hr/hr <<EOF

select count(*) from employees;

update employees set salary = salary*1.10;

commit;

quit

EOF

You can call that shell script from the command line:

$./batch_sqlplus.sh

For More Information

To learn how to start SQL*Plus, see “Starting SQL Plus” in SQL*Plus Users Guide and Reference.

Oracle Database 23c: Administration Workshop 2 - 9

Oracle SQL Developer (SQL Developer) is a graphical tool for database developers and DBAs and gets

installed with Oracle Database. You can choose to display several different panes in the SQL Developer

interface, such as a Connections and DBA pane. You use the former to define connections to databases

and use the latter to perform DBA operations. You should add connections only for which the associated

database user has DBA privileges or at least privileges for the desired DBA navigator operations on the

specified database.

Some developer-type operations that you can perform with SQL Developer include:

• Develop scripts in both the SQL and PL/SQL languages

• Browse database objects

• Run SQL statements and SQL scripts

• Edit and debug PL/SQL statements

Oracle SQL Developer

Oracle Database 23c: Administration Workshop 2 - 10

Oracle SQL Developer is a tool that allows stand-alone graphical browsing and development of database

schema objects, as well as execution of database administrative tasks.

SQL Developer enables users with database administrator privileges to view and edit certain information

relevant to DBAs and perform DBA operations. To perform DBA operations, use the DBA navigator, which

is similar to the Connections navigator in that it has nodes for all defined database connections. If the

DBA navigator is not visible, select View, then DBA. You should add only connections for which the

associated database user has DBA privileges, or at least privileges for the desired DBA navigator

operations on the specified database.

Oracle SQL Developer: Connections

• Perform DBA operations in the DBA navigator by using DBA connections:

Oracle Database 23c: Administration Workshop 2 - 11

The DBA operations that can be performed are the following:

• Database startup/shutdown

• Database configuration: Initialization Parameters, Automatic Undo Management, Current

Database Properties, Restore Points, View Database Feature Usage

• Database status view

• Data Pump export and import jobs

• RMAN backup/recovery actions

• Resource Manager configuration

• Scheduler setting

• Security configuration like audit settings, profiles, roles, and users

• Storage configuration for archive logs, control files, data files, redo log groups, tablespaces, and

temporary tablespace groups

Oracle SQL Developer: DBA Actions

Using DBA features through DBA navigator

Performing DBA actions

Oracle Database 23c: Administration Workshop 2 - 12

Database Configuration Assistant (DBCA) is a tool that you can use to do the following:

• Create databases (CDBs and non-CDBs)

• Configure existing databases

• Delete databases

• Manage templates

• Manage pluggable databases

• Manage Oracle RAC database instances

DBCA can be launched by the Oracle Universal Installer (OUI), depending upon the type of install that you

select. You can also launch DBCA as a stand-alone tool at any time after Oracle Database installation.

See Oracle Database Administrator’s Guide and Oracle Database 2 Day DBA for detailed information.

Database Configuration Assistant (DBCA)

• DBCA is a tool for creating and configuring an Oracle database.

• DBCA has two modes:

‒ Interactive: Provides a graphical interface and guided workflow

‒ Noninteractive/silent: Uses command-line arguments, a response file, or both

• DBCA can be launched by the Oracle Universal Installer or invoked after the

software is installed.

Oracle Database 23c: Administration Workshop 2 - 13

Oracle Web Server

Oracle Enterprise Manager Database Express

Listener

Dispatcher

Request

Common
Reporting

Framework

File Manager

Get Report

Get shell files

Console

Oracle Database
Instance

Shared
Server

EM Express Servlet

• Authentication
• Session Management
• Compression
• Caching

Oracle Enterprise Manager Database Express

Oracle Enterprise Manager Database Express (EM Express) is a lightweight tool that you can use to

manage a CDB and all of its PDBs (except the seed PDB). It provides an out-of-the-box browser-based

management solution, performance monitoring, configuration management, administration, diagnostics,

and tuning.

Architecture

EM Express uses a web-based console, communicating with the built-in web server available in XML DB.

As requests from the console are processed, the EM Express servlet handles the requests, including

authentication, session management, compression, and caching. The servlet passes requests for reports

to the Common Reporting Framework and actions requiring shell files to the File Manager. This

architecture is illustrated in the slide.

EM Express is available only when the database is open. This means that Enterprise Manager Database

Express cannot be used to start the database instance. Other operations that require that the database

change state, such as enable or disable ARCHIVELOG mode, are also not available in EM Express.

EM Express is configurable with a single click in Database Configuration Assistant (DBCA).

EM Express is a servlet built on top of Oracle XML DB. The Oracle XML DB default wallet has a self-signed

certificate, and some existing browsers consider self-signed certificates as untrusted because they are not

signed by a trusted CA (certificate authority). However, the self-signed certificate is still secure, as it

ensures that the traffic is encrypted between the Oracle XML DB server and the client (browser).

Therefore, enter a security exception for the EM Express URL in your web browser.

Oracle Database 23c: Administration Workshop 2 - 14

Requirements

The following are required for EM Express:

• XMLDB components must be installed on the Oracle Database server. All Oracle Databases of

version 12.1.0 or higher have XMLDB installed.

• The web browser must have the Flash plug-in installed because EM Express uses Shockwave Flash

(SWF) files.

Starting EM Express for CDBs and PDBs

EM Express uses a global HTTPS port to connect to and manage non-CDBs, CDBs, and PDBs. Starting

with Oracle Database 12c Release 2, you can set a global port that enables Enterprise Manager Database

Express access to the CDB and all PDBs on that single port.

Oracle Database 23c: Administration Workshop 2 - 15

Oracle Enterprise Manager Cloud Control (EM Cloud Control) is Oracle’s on-premises management

platform, providing a single location for managing all your Oracle deployments, whether they be in your

data centers or in Oracle Cloud. Through deep integration with Oracle’s product stack, EM Cloud Control

provides management and automation support for Oracle applications, databases, middleware, hardware,

and engineered systems.

Key objectives in the design of Enterprise Manager Cloud Control 13c include:

• Providing a complete integrated cloud management solution for a combination of on-premises

cloud configurations and Oracle Cloud Services solutions (Hybrid Cloud)

• Delivering enhanced engineered systems management

• Enhancing middleware and database management

• Maintaining a robust, cloud-scale platform

Enterprise Manager Cloud Control 13c includes the following features:

• Enterprise-Ready Framework: Provides modular and extensible architecture, self-updateable

entities, centralized incident management, in-context diagnostics management, as well as flexible

job scheduling and security sub-systems

• Cloud Management: Provides complete cloud life cycle management for both on-premises clouds

and PaaS services on Oracle Cloud

• Chargeback and Capacity Planning: Provides chargeback based on target types and uses

Automatic Workload Repository (AWR) Warehouse to consolidate AWR reports from multiple

databases across the enterprise

Enterprise Manager Cloud Control 13c Features

Applications
Management

Enterprise-Ready
Framework

Unified Cloud
Management:
Hybrid Cloud

Chargeback and
Capacity Planning

Middleware
Management

Database
Management

Application Quality
Management

Configuration
Management

Exadata and
Exalogic

Management

Provisioning and
Patching

Oracle Database 23c: Administration Workshop 2 - 16

• Exadata and Exalogic Management: Provides an integrated view of the hardware and

software in an Exadata machine and complete life cycle management for Exalogic systems

• Configuration and Management: Provides an integrated set of tools, agent-less

discovery, integration with My Oracle Support, and custom configuration capabilities

• Provisioning and Patching: Provides profiles for provisioning known configurations, user-

defined deployment procedures, and a Software Library integrated with self-updating

capabilities

• Application and Quality Management: Provides Database Replay, Application Server

Replay, Real Application Testing integrated with Data Masking, and test database

management that includes Application Data Model

• Database Management: Provides management of Oracle Database systems, including

performance management and change life cycle management

• Middleware Management: Provides complete management of Middleware systems

• Applications Management: Provides management of Fusion Applications

Oracle Database 23c: Administration Workshop 2 - 17

Oracle Enterprise Manager Component Overview

Oracle Management
Repository

Oracle Management
Service

Cloud Control
Console

Target-specific
plug-in

Oracle Management
Agent

Managed
Hosts

Oracle Enterprise Manager Cloud Control is composed of four main components as illustrated in the slide:

• Oracle Management Repository (OMR)

• Oracle Management Service (OMS)

• Oracle Management Agent (OMA or agent) with target-specific plug-ins

• Cloud Control Console

The Oracle Management Agent runs on hosts, gathering metric data about those host environments as

well as using plug-ins to monitor availability, configuration, and performance, and to manage targets

running on the host. The agents communicate with the Oracle Management Service to upload metric data

collected by them and their plug-ins. In turn, the OMS stores the data it collects in the Oracle

Management Repository where it can be accessed by the OMS for automated and manual reporting and

monitoring. The OMS also communicates with the agents to orchestrate the management of their

monitored targets. As well as coordinating the agents, the OMS runs the Cloud Control Console web

pages that are used by administrators and users to report on, monitor, and manage the computing

environment that is visible to Cloud Control via the agents and their plug-ins.

Oracle Database 23c: Administration Workshop 2 - 18

One Management Tool to Oversee Them All

Enterprise Manager Cloud Control 13c has capabilities to intelligently manage traditional and cloud-based

services, mitigating the need to use multiple management and monitoring tools for what were previously

two disparate environments.

• Complete solution for management of the Oracle stack, including engineered systems, with real-

time integration of Oracle’s knowledge base with customer environments

• End-to-end performance management and automation

• Integrated Ops Center functionality to monitor and manage both hardware and software from a

single interface

• Common management practices applicable to on-premises targets and Oracle Cloud targets

• Quality of Service (QoS) management to ensure delivery of the best service possible to internal

and external customers

• Life cycle and cloud management for simplified provisioning and patching of applications and

platforms

• Data governance and compliance controls for conforming with internal and external standards

and requirements

• Ability to back up to the cloud to leverage the Oracle Cloud capacity

• Hybrid cloud option to move workloads and clone targets between on-premises and Oracle Cloud

Single Pane of Glass for Enterprise Management

Data Governance &
Compliance Controls

Back Up to the Cloud

Workload Portability and
Secure, Bidirectional Cloning

Unified Self-
Service Catalog

Quality of Service
Management

Life Cycle & Cloud
Management

Common Cloud Management Practices

Storage MiddlewareNetwork VMs/Servers Databases Applications

Oracle Database 23c: Administration Workshop 2 - 19

Database management involves the monitoring, administration, and maintenance of the databases and

database groups in your enterprise. With Enterprise Manager, you receive a complete set of integrated

features for managing Oracle Database, which enables you to:

• Perform day-to-day tasks and run repetitive jobs

• Detect problems and use the available guided resolution workflows

• Manage a single database or thousands of database instances via scalability

• Lead the industry in ease of deployment and use with an intuitive management product

Using Oracle Enterprise Manager Cloud Control, you can keep your Oracle Databases available and

running efficiently.

You can use the available administration tools to manage database objects and initiate database

operations inside an Oracle Database.

The following list provides some of the database administration tasks you can perform:

• Allocate system storage and plan future storage requirements.

• Use the Oracle Scheduler to control when and where various tasks occur in the database

environment.

• Migrate your database storage to use Oracle Automatic Storage Management.

Oracle Enterprise Manager Database Management

Oracle Database 23c: Administration Workshop 2 - 20

Oracle Enterprise Manager Database Details Page (continued)

• Use the Database Resource Manager to control the distribution of resources among various

sessions by controlling the execution schedule inside the database.

• Create and manage primary database objects such as tables, views, and indexes.

• Perform administration tasks for Oracle XML DB, such as viewing or editing parameters for the

Oracle XML DB configuration file.

• Create, manage, and perform specific actions against materialized views, which are schema

objects that can be used to summarize, compute, replicate, and distribute data.

Oracle Database 23c: Administration Workshop 2 - 21

Summary

Describe the tools used to access Oracle Database

Connect to Oracle Database

Oracle Database 23c: Administration Workshop 2 - 22

Creating an Oracle Database by Using DBCA

Objectives

Generate database creation scripts by using DBCA

Create a database by using the Database Configuration Assistant (DBCA)

Oracle Database 23c: Administration Workshop 3 - 2

It is important to plan how the logical storage structure of the database will affect system performance

and various database management operations. For example, before creating any tablespaces for your

database, you should know how many data files will make up the tablespace, what type of information will

be stored in each tablespace, and where the data files will be physically stored. Information such as the

availability of network attached storage (NAS) and the bandwidth for the private storage network is

important. If storage area networks (SAN) are going to be used, knowing how the logical volumes are

configured and the stripe size is useful.

When planning the overall logical storage of the database structure, take into account the effects that this

structure will have when the database is actually created and running. You may have database objects

that have special storage requirements due to type or size.

In distributed database environments, this planning stage is extremely important. The physical location of

frequently accessed data dramatically affects application performance.

During the planning stage, develop a backup strategy for the database. You can alter the logical storage

structure or design of the database to improve backup efficiency. Backup strategies are introduced in a

later lesson.

Planning the Database

• As a DBA, you must plan:

‒ The logical storage structure of the database and its physical implementation:

– What type of storage is being used?

– How many data files will you need? (Plan for growth)

– How many tablespaces will you use?

– What types of information will be stored?

– Are there any special storage requirements due to type or size?

‒ Overall database design

‒ Database backup strategy

Oracle Database 23c: Administration Workshop 3 - 3

Different types of databases have their own specific instance and storage requirements. Your Oracle

database software includes templates for the creation of these different types of databases.

Characteristics of these examples are the following:

• General purpose: For general purpose or transaction processing usage such as working with

transactions and storing them for a medium length of time

• Custom: For customized databases that do not fit into the general purpose or data warehouse

template

• Data warehouse: For storing data for long periods and retrieving them in read operations

Choosing a Database Template

• General purpose or transaction processing:

‒ Online transaction processing (OLTP) system, for example, a retail billing system

for a software house or a nursery

• Custom:

‒ Multipurpose database (perhaps combined OLTP and data warehouse

functionality)

• Data warehouse:

‒ Research and marketing data

‒ State or federal tax payments

‒ Professional licensing (doctors, nurses, and so on)

Oracle Database 23c: Administration Workshop 3 - 4

When computer systems process characters, they use numeric codes instead of the graphical

representation of the character. An encoded character set maps numeric codes to characters that a

computer or terminal can display and receive. Different character sets support different character

repertoires. Because character sets are typically based on a particular writing script, they can support

more than one language. However, script-based character sets are restricted in the sense that they are

limited to groups of languages based on similar scripts. Universal character sets encompass most major

scripts of the modern world and provide a more useful solution to multilingual support. For information

about the Unicode standards, see the web site at http:www.unicode.org.

The Oracle database supports three classes of encoding schemes: Single-byte, Varying-width multibyte,

and Universal. Choose the correct character set that best meets your business requirements now and in

the future because it can be difficult to change character sets later on. For best performance, choose a

character set that avoids character set conversion and uses the most efficient encoding for the languages

desired. Single-byte character sets result in better performance than multibyte character sets, and they

also are the most efficient in terms of space requirements. However, single-byte character sets limit how

many languages you can support. To choose your correct database character set, evaluate your current

and future business requirements, as well as technical requirements (for example, the XML and Java

standards require Unicode). In general, Oracle recommends the use of Unicode for all new databases,

because it is the most flexible character set and avoids future conversions.

Single-Byte Character Sets

In a single-byte character set, each character occupies one byte. Single-byte 7-bit encoding schemes can

define up to 128 (27) characters; single-byte 8-bit encoding schemes can define up to 256 (28) characters.

Choosing the Appropriate Character Set

• The character set is chosen at the time of database creation. Choose the character

set that best meets your business requirements now and in the future because it

can be difficult to change character sets later on.

• The Oracle database supports different classes of character-encoding schemes:

‒ Single-byte character sets

– 7-bit

– 8-bit

‒ Multibyte character sets, including Unicode

• In general, Unicode is recommended because it is the most flexible character set.

Oracle Database 23c: Administration Workshop 3 - 5

Examples of Single-Byte Schemes

• 7-bit character set:

– American Standard Code for Information Interchange (ASCII) 7-bit American (US7ASCII)

• 8-bit character set:

– International Organization for Standards (ISO) 8859-1 West European (WE8ISO8859P1)

– DEC 8-bit West European (WE8DEC)

– Extended Binary Coded Decimal Interchange Code (EBCDIC) Code Page 1144 8-bit Italian

(I8EBCDIC1144)

Multibyte Character Sets

• A varying-width multibyte character set is represented by one or more bytes per character.

Multibyte character sets are commonly used for Asian language support. Some multibyte

encoding schemes use the value of the most significant bit to indicate whether a byte represents a

single byte or is part of a series of bytes representing a character. However, other character-

encoding schemes differentiate single-byte from multibyte characters. A shift-out control code,

sent by a device, indicates that any successive bytes are double-byte characters until a shift-in

code is encountered. Shift-sensitive encoding schemes are used primarily on IBM platforms.

• Unicode is a universal encoded character set that enables information from any language to be

stored using a single character set. Unicode provides a unique code value for every character,

regardless of the platform, program, or language.

• The Unicode standard has been adopted by many software and hardware vendors. Many

operating systems and browsers now support Unicode. Unicode is required by standards such as

XML, Java, JavaScript, LDAP, and WML. It is also synchronized with the ISO/IEC 10646 standard.

Examples of Varying-Width Multibyte Schemes

• Shift-JIS 16-bit Japanese (JA16SJIS)

• MS Windows Code Page 950 with Hong Kong Supplementary Character Set HKSCS-2001

(ZHT16HKSCS)

• Unicode 4.0 UTF-8 Universal character set (AL32UTF8) - a variable-width type of encoding and

also a strict superset of ASCII

• Unicode (ALl16UTF16 – a 16-bit encoding of Unicode that is used by both Microsoft Windows 2000

and Windows XP

Oracle Database 23c: Administration Workshop 3 - 6

The NLS_LANG parameter defines a client terminal’s character-encoding scheme. Different clients can

use different encoding schemes. Data passed between the client and the server is converted

automatically between the two encoding schemes. The database’s encoding scheme should be a

superset, or equivalent, of all the clients’ encoding schemes. The conversion is transparent to the client

application.

When the database character set and the client character set are the same, the database assumes that the

data being sent or received is of the same character set, so no validations or conversions are performed.

Character set conversion may be required in a client/server environment, if a client application resides on

a different platform than the server and if the platforms do not use the same character-encoding

schemes. Character data passed between the client and the server must be converted between the two

encoding schemes. Character conversion occurs automatically and transparently through Oracle Net.

How are character sets used?

• Oracle Net compares the client NLS_LANG setting to the character set on the server.

• If needed, conversion occurs automatically and transparently.

Client

Oracle Net

NLS_LANG

Server

Oracle Database 23c: Administration Workshop 3 - 7

Invalid data usually enters a database when the NLS_LANG parameter is not set properly on the client.

The NLS_LANG value should reflect the encoding of the incoming data.

When the NLS_LANG parameter is set properly, the database can automatically convert incoming data

from the client operating system.

When the NLS_LANG parameter is not set properly, the data entering the database is not converted

properly.

For example, suppose that the database character set is AL32UTF8, the client is an English Windows

operating system (code page: WE8MSWIN1252), and the NLS_LANG setting on the client is AL32UTF8.

Data entering the database is encoded in WE8MSWIN1252 and is not converted to AL32UTF8 data

because the NLS_LANG setting on the client matches the database character set. The Oracle database

server assumes that no conversion is necessary, and invalid data is entered into the database.

Setting NLS_LANG Correctly on the Client

• No conversion occurs, because it does not seem to be required.

• Invalid data is entered into the database.

Client

Windows English

Code page: WE8MSWIN1252

Oracle Net

NLS_LANG=AL32UTF8

Server

Database character set:

AL32UTF8

Oracle Database 23c: Administration Workshop 3 - 8

Oracle Database Configuration Assistant (DBCA) is a tool for creating and configuring an Oracle database.

DBCA can be launched by the Oracle Universal Installer (OUI), depending upon the type of install that you

select. You can also launch DBCA as a stand-alone tool at any time after Oracle Database installation.

You can run DBCA in interactive mode or noninteractive/silent mode. Interactive mode provides a

graphical interface and guided workflow for creating and configuring a database.

You can use DBCA to create a database from a template supplied by Oracle or from a template that you

create. A DBCA template is an XML file that contains information required to create a database. Select the

template suited to the type of workload your database will support. If you are not sure which to choose,

then use the "General purpose OR online transaction processing" template. You can also create custom

templates to meet your specific workload requirements.

The information in templates includes database options, initialization parameters, and storage attributes

(for data files, tablespaces, control files, and online redo log files).

Templates can be used just like scripts, but they are more powerful than scripts because you have the

option of duplicating a database. Duplication saves time because you copy the files of an existing

database, referred to as a seed database, to the correct locations.

With a multitenant container database (CDB), you can use DBCA to perform pluggable database (PDB)

operations in the CDB. You can create, delete, and unplug a PDB.

You can use DBCA to change the configuration of an existing database. For example, you can make

configuration changes such as:

• Add database options that were not previously configured

• Change default security settings

• Change the server mode from dedicated to shared or the reverse

Using the Database Configuration Assistant

Task Description

Create a database Create and configure a new database

Create and manage database design templates Create an XML file containing information required
to create a new database

Delete a database Shut down the database instance and delete all
database files

Manage pluggable databases in a multitenant
architecture

Create, delete, and unplug PDBs

Change the configuration of a database or PDB Configure options and security settings

Oracle Database 23c: Administration Workshop 3 - 9

You can also create a database using the noninteractive/silent mode of DBCA. Noninteractive/silent
mode enables you to script database creation. You can run DBCA in noninteractive/silent mode by
specifying command-line arguments, a response file, or both.

Specify true to create a CDB. Specifying false is not supported starting with Oracle Database Release 20.3.

When true is specified, the following additional parameters are optional:
-numberOfPDBs: Number of PDBs to create. The default is 0 (zero).

-pdbName: Base name of each PDB. A number is appended to each name if
-numberOfPDBs is greater than 1. This parameter must be specified if -numberOfPDBs is greater
than 0 (zero).

-useLocalUndoForPDBs {true | false}: Specify whether local undo should be used for the PDBs.

-pdbAdminPassword: PDB administrator password

See the Oracle Database Administrator’s Guide for detailed information about the syntax and options for
the Database Configuration Assistant (DBCA) silent mode commands.

Using DBCA in Silent Mode

• Create a new database named ORCL using the General Purpose template:

• Delete a database named ORCL:

$ORACLE_HOME/bin/dbca -silent -createDatabase

-templateName General_Purpose.dbc -gdbname ORCL

-sid ORCL -createAsContainerDatabase true

-numberOfPDBs 1 -pdbName pdb1 -useLocalUndoForPDBs true

-responseFile NO_VALUE -characterSet AL32UTF8

-totalMemory 1800 -sysPassword Welcome_1

-systemPassword Welcome_1 -pdbAdminPassword Welcome_1

-emConfiguration DBEXPRESS -dbsnmpPassword Welcome_1

-emExpressPort 5500 -enableArchive true

-recoveryAreaDestination /u03/app/oracle/fast_recovery_area

-recoveryAreaSize 15000 -datafileDestination /u02/app/oracle/oradata

$ORACLE_HOME/bin/dbca -silent -deleteDatabase -sourceDB ORCL -sid ORCL

-sysPassword Welcome_1

Oracle Database 23c: Administration Workshop 3 - 10

Summary

Generate database creation scripts by using DBCA

Create a database by using the Database Configuration Assistant (DBCA)

Oracle Database 23c: Administration Workshop 3 - 11

Creating an Oracle Database by Using
a SQL Command

Oracle Database 23c: Administration Workshop 4 - 2

Objectives

Create a container database (CDB) by using the CREATE DATABASE

command

Use the CREATE DATABASE statement to create a database, making it available for general use.

This statement erases all data in any specified data files that already exist in order to prepare them for

initial database use. If you use the statement on an existing database, then all data in the data files is lost.

To create a database, you must have the SYSDBA system privilege. An initialization parameter file with

the name of the database to be created must be available, and you must be in STARTUP NOMOUNT

mode.

Starting with Oracle Database 21c, the ENABLE_PLUGGABLE_DATABASE initialization parameter is set to

TRUE by default. If you set the ENABLE_PLUGGABLE_DATABASE initialization parameter to FALSE, the

command will fail.

The CREATE DATABASE enable_pluggable_database statement creates a CDB that contains a root

and a seed container. You then create PDBs in the CDB by using the CREATE PLUGGABLE DATABASE

statement.

The operation creates the control files during the mount phase and the redo log files and CDB root data

files during the open phase. The CDB root data files are used for the SYSTEM tablespace containing the

Oracle-supplied metadata and data dictionary, the SYSAUX tablespace for the Automatic Workload

Repository (AWR), and the undo tablespace.

It also creates the CDB seed with its own data files used for the SYSAUX, SYSTEM, and undo tablespaces.

You may use the SEED FILE_NAME_CONVERT clause to define the data files location of the CDB seed

pluggable database. The clause creates the CDB seed. The CDB seed data files can be used as templates

for future PDBs creation. If you omit this clause, Oracle Managed Files (OMF) determines the names and

locations of the CDB seed’s files.

Oracle Database 23c: Administration Workshop 4 - 3

Creating a Container Database (CDB)

Instance

Instance

CDB

initCDB1.ora

From CDB root, execute
catcdb.sql

or
catalog.sql and
catproc.sql

and all scripts for options

SGA

Process Structures

CDB root

Data files Redo Log
files

Control
files

UNDO

TEMP

CDB seed

Data files

UNDO

1

2

3

SYSTEM

SYSAUX

SYSTEM

SYSAUX

TEMP

Below are the detailed steps to create a new CDB using SQL*Plus.

1. Before starting the instance, create an initialization parameter file with the parameters: DB_NAME,

CONTROL_FILES if OMF is not used, and DB_BLOCK_SIZE. The global database name of the CDB

root is the global database name of the CDB. You can also use the MAX_PDBS parameter to limit

the number of PDBs in the CDB. Set the ORACLE_SID environment variable. Launch SQL*Plus,

connect as an OS authenticated user belonging to the DBA OS group, and execute the STARTUP

NOMOUNT command. If you are using Oracle Automatic Storage Management (ASM) storage to

manage your disk storage, then you must start the Oracle ASM instance and configure your disk

groups before performing the next steps.

2. Use the CREATE DATABASE command with the ENABLE PLUGGABLE DATABASE clause to

create a CDB. The command creates the CDB root and the CDB seed. You can use the SEED

FILE_NAME_CONVERT clause to specify the location of the CDB seed’s files. If you omit the clause,

OMF determines the names and locations of the CDB seed’s files. FILE_NAME_CONVERT specifies

the source directory of the CDB root data files and the target CDB seed directory.

Omit the SEED FILE_NAME_CONVERT clause if you use the PDB_FILE_NAME_CONVERT

initialization parameter that maps names of the CDB root data files to the CDB seed data files. The

directories must exist. The character set defined is the single one for the CDB.

3. Run the catcdb.sql SQL script to build views on the data dictionary tables and install standard

PL/SQL packages in the CDB root. You can also execute the catalog.sql and catproc.sql

SQL scripts and all other SQL scripts related to the options installed.

Oracle Database 23c: Administration Workshop 4 - 4

Creating a CDB by Using a SQL Command: Example

1. Start up the instance :

a. Set ORACLE_SID=CDB1.

b. Create the initCDB1.ora file and set parameters:

– CONTROL_FILES to CDB control file names

– DB_NAME to a CDB name

– ENABLE_PLUGGABLE_DATABASE to TRUE

2. Create the database:

➔ CDB$ROOT + PDB$SEED created

3. Execute the $ORACLE_HOME/rdbms/admin/catcdb.sql SQL script.

SQL> CONNECT / AS SYSDBA

SQL> STARTUP NOMOUNT

SQL> CREATE DATABASE cdb1 ENABLE PLUGGABLE DATABASE …

SEED FILE_NAME_CONVERT = ('/oracle/dbs','/oracle/seed');

One way to declare the directory for the PDB seed data files is to use the SEED FILE_NAME_CONVERT

clause. The FILE_NAME_CONVERT clause specifies the source directory of the CDB root data files and the

target CDB seed directory.

The ENABLE PLUGGABLE DATABASE clause indicates that a CDB is being created. The CDB will contain

a root (CDB$ROOT) and a seed (PDB$SEED). The FILE_NAME_CONVERT clause specifies that names of

files for the seed will be generated by replacing /u01/app/oradata/CDB! in the names of files

associated with the root with /u01/app/oradata/CBD1/seed.

The /u01/app/oradata/CDB1 root directory and the /u01/app/oradata/CDB1/seed seed directory

must exist.

Oracle Database 23c: Administration Workshop 4 - 5

Using the SEED FILE_NAME_CONVERT Clause

SQL> CREATE DATABASE cdb1

USER SYS IDENTIFIED BY p1 USER SYSTEM IDENTIFIED BY p2

LOGFILE GROUP 1 ('/u01/app/oradata/CDB1/redo1a.log',

'/u02/app/oradata/CDB1/redo1b.log') SIZE 100M,

GROUP 2 ('/u01/app/oradata/CDB1/redo2a.log',

'/u02/app/oradata/CDB1/redo2b.log') SIZE 100M

CHARACTER SET AL32UTF8 NATIONAL CHARACTER SET AL16UTF16

EXTENT MANAGEMENT LOCAL DATAFILE

'/u01/app/oradata/CDB1/system01.dbf' SIZE 325M

SYSAUX DATAFILE '/u01/app/oradata/CDB1/sysaux01.dbf' SIZE 325M

DEFAULT TEMPORARY TABLESPACE tempts1

TEMPFILE '/u01/app/oradata/CDB1/temp01.dbf' SIZE 20M

UNDO TABLESPACE undotbs

DATAFILE '/u01/app/oradata/CDB1/undotbs01.dbf' SIZE 200M

ENABLE PLUGGABLE DATABASE

SEED

FILE_NAME_CONVERT =('/u01/app/oradata/CDB1','/u01/app/oradata/CDB1/seed');

Oracle Managed Files

If you do not use explicit data file names, use Oracle Managed Files (OMF):

• Set the DB_CREATE_FILE_DEST initialization parameter with the value of the destination

directory of the data files of the SYSTEM, SYSAUX, UNDO, and USERS tablespaces specified in

the statement. Oracle chooses default sizes and properties for all data files, control files, and redo

log files.

• The /u01/app/oradata directory must exist.

PDB_FILE_NAME_CONVERT Instance Parameter

If you do not use the SEED FILE_NAME_CONVERT clause, use an initialization parameter:

• The PDB_FILE_NAME_CONVERT initialization parameter maps names of existing files (the root

data files in your case) to new file names (the seed data files in this case).

• In the example, both /u01/app/oradata/CDB2 and /u01/app/oradata/CDB1/seed

directories must exist.

Oracle Database 23c: Administration Workshop 4 - 6

Using the ENABLE PLUGGABLE DATABASE Clause

• Without SEED FILE_NAME_CONVERT:

‒ OMF: DB_CREATE_FILE_DEST=‘/u01/app/oradata'

‒ Or initialization parameter: PDB_FILE_NAME_CONVERT =

‘/u01/app/oradata/CDB1',’/u01/app/oradata/CDB1/seed'

SQL> CONNECT / AS SYSDBA

SQL> STARTUP NOMOUNT

SQL> CREATE DATABASE cdb2

USER SYS IDENTIFIED BY p1 USER SYSTEM IDENTIFIED BY p2

EXTENT MANAGEMENT LOCAL

DEFAULT TEMPORARY TABLESPACE temp

UNDO TABLESPACE undotbs

DEFAULT TABLESPACE users

ENABLE PLUGGABLE DATABASE;

Oracle Database 23c: Administration Workshop 4 - 7

Summary

Create a CDB by using the CREATE DATABASE command

Starting Up and Shutting Down a
Database Instance

Oracle Database 23c: Administration Workshop 5 - 2

Objectives

Open and close PDBs

Start up and shut down Oracle databases

Before users can connect to a database instance, a database administrator must start the database

instance. The database instance and database go through stages as the database is made available for

access by users. The database instance is started, the database is mounted, and then the database is

opened, as shown in the slide.

You can use the STARTUP command in SQL*Plus with the options shown in the slide for each stage. The

default option is OPEN.

NOMOUNT: During this stage, the Oracle software reads an initialization parameter file, starts background

processes, allocates memory to the SGA, and opens the alert log and trace files. An instance is typically

started only in NOMOUNT mode during database creation, during re-creation of control files, or in certain

backup and recovery scenarios.

MOUNT: During this stage, the Oracle software associates the database (CDB) with the previously started

database instance, opens and reads the control files that are specified in the initialization parameter file,

and obtains the names and statuses of the data files and online redo log files. No checks, however, are

performed to verify the existence of the data files and online redo log files at this time. Start in MOUNT

mode to perform some maintenance operations, such as renaming data files and performing full

database recoveries.

OPEN: The Oracle software opens the redo log files and data files according to the list registered in the

control files. Start up in OPEN mode to enable users to connect to the database instance. PDBs are not, by

default, started when you open the database.

Oracle Database 23c: Administration Workshop 5 - 3

Starting the Oracle Database Instance

STARTUP

SHUTDOWN

NOMOUNT

MOUNT

OPEN

STARTUP

All files opened as described by
the control file for the instance

STARTUP MOUNT

Control file opened

for the instance

STARTUP NOMOUNT

Instance started

ABORT Mode: If the other shutdown modes don't work, you can use ABORT mode. ABORT mode performs

the least amount of work before shutting down. Because this mode puts the database in an inconsistent

state and requires recovery before startup, use it only when necessary. It's not advisable to back up the

database in this state. It's typically used when no other form of shutdown works, when there are problems

with starting the database instance, or when you need to shut down immediately because of an

impending situation (such as notice of a power outage within seconds). ABORT mode is usually the fastest

shutdown mode and NORMAL mode is the slowest. NORMAL and TRANSACTIONAL modes can take a long

time depending on the number of sessions and transactions.

The following happens during a shutdown in ABORT mode, an instance failure, or a database instance

startup in FORCE mode:

• Current SQL statements being processed by the Oracle server are immediately terminated.

• The Oracle server does not wait for users who are currently connected to the database to

disconnect.

• Database and redo buffers are not written to disk.

• Uncommitted transactions are not rolled back.

• The instance is terminated without closing the files.

• The database is not closed or dismounted.

• The next startup requires instance recovery, which occurs automatically.

Oracle Database 23c: Administration Workshop 5 - 4

Shutting Down an Oracle Database Instance

• Sometimes, you need to shut down the database instance (for example, to change a

static parameter or patch the database server).

• Use the SHUTDOWN command to shut down the database instance in various modes:

ABORT, IMMEDIATE, NORMAL, and TRANSACTIONAL.

ABORT IMMEDIATE NORMAL TRANSACTIONAL

Allows new connections No No No No

Waits until current sessions
end

No No Yes No

Waits until current
transactions end

No No Yes Yes

Forces a checkpoint and
closes files

No Yes Yes Yes

IMMEDIATE Mode: A shutdown in IMMEDIATE mode is the most typically used option.

• Current SQL statements being processed by the database instance are not completed.

• The database server does not wait for the users who are currently connected to the database

instance to disconnect.

• The database server rolls back active transactions and disconnects all connected users.

• The database server closes and dismounts the database before shutting down the database

instance.

NORMAL Mode: NORMAL is the default shutdown mode if no mode is specified with the SHUTDOWN

command.

• No new connections can be made.

• The Oracle server waits for all users to disconnect before completing the shutdown.

• Database and redo buffers are written to disk.

• Background processes are terminated, and the SGA is removed from memory.

• The Oracle server closes and dismounts the database before shutting down the instance.

TRANSACTIONAL Mode: A shutdown in TRANSACTIONAL mode prevents clients from losing data,

including results from their current activity.

• No client can start a new transaction on this particular instance.

• A client is disconnected when the client ends the transaction that is in progress.

• When all transactions have been completed, a shutdown occurs immediately.

Oracle Database 23c: Administration Workshop 5 - 5

The diagram in this slide shows the IMMEDIATE, TRANSACTIONAL, and NORMAL shutdown modes. The

diagram in the next slide shows ABORT shutdown mode (and instance failure or STARTUP FORCE mode).

Notice that the database becomes inconsistent when you perform an ABORT shutdown, whereas it stays

consistent during the other shutdown modes. Also note that you need to recover the database instance

after you perform an ABORT shutdown, whereas with the other shutdown modes, you don't need to do so.

Oracle Database 23c: Administration Workshop 5 - 6

Comparing SHUTDOWN Modes

Notice that the database becomes inconsistent when you perform an ABORT shutdown, whereas it stays

consistent during the other shutdown modes. Also, note that you need to recover the database instance

after you perform an ABORT shutdown, whereas with the other shutdown modes, you don't need to do so.

Oracle Database 23c: Administration Workshop 5 - 7

Comparing SHUTDOWN Modes

Open Modes

Starting up a PDB and opening a PDB mean the same thing, and you'll find both phrases used in

documentation and online resources. When you open a PDB, the database server opens the data files for

that PDB. Similar to a CDB, a PDB has four levels of being open, and these levels are referred to as open

modes. The open modes are READ WRITE (the PDB is fully started/opened), READ ONLY, MIGRATE, and

MOUNTED (the PDB is shut down/closed).

Commands to Open and Close PDBs

You can use the ALTER PLUGGABLE DATABASE command to open and close a PDB from either the root

container or within the PDB itself. You can also use STARTUP and SHUTDOWN commands. The ALTER

PLUGGABLE DATABASE command lets you change from any open mode to another for a PDB. To use the

STARTUP command, the PDB must first be in MOUNTED mode. Either command requires you to be

connected to the root container or PDB with one of the following system privileges: AS SYSBACKUP, AS

SYSDBA, AS SYSDG, or AS SYSOPER.

Examples

In this example, PDB1 is started up (opened). Its open mode is changed from MOUNT to READ WRITE.

SQL> ALTER PLUGGABLE DATABASE PDB1 OPEN;

In this example, PDB1 is shut down (closed). Its open mode is changed to MOUNT.

SQL> ALTER PLUGGABLE DATABASE PDB1 CLOSE;

Oracle Database 23c: Administration Workshop 5 - 8

Opening and Closing PDBs

• Open/close a PDB to open/close its data files.

• A PDB has four open modes:

‒ READ WRITE (the PDB is fully started/opened)

‒ READ ONLY

‒ MIGRATE

‒ MOUNTED (the PDB is shut down/closed)

• Use the ALTER PLUGGABLE DATABASE command or STARTUP and SHUTDOWN commands to

open and close PDBs.

‒ Example: SQL> ALTER PLUGGABLE DATABASE PDB1 OPEN;

• The ALTER PLUGGABLE DATABASE command lets you change from any open mode to

another.

• To use the STARTUP command, the PDB must be in MOUNTED mode.

After restarting a CDB instance, the PDBs are by default kept in mounted mode. If you want the PDBs to

automatically open whenever the CDB restarts, use the SAVE STATE clause of the ALTER PLUGGABLE

DATABASE command to preserve a PDB’s open mode across CDB restart. The SAVE STATE clause saves

the last open state of the PDB. So, the PDB will open after the CDB restart only if the PDB was in the open

state when the SAVE STATE clause was used to save the last state. To revert to the default behavior, use

the DISCARD STATE clause.

Oracle Database 23c: Administration Workshop 5 - 9

Configuring PDBs to Automatically Open

• Automatically keep the PDB’s state after CDB STARTUP:

• Automatically discard the PDB’s state after CDB STARTUP:

SQL> ALTER PLUGGABLE DATABASE pdb1 SAVE STATE;

SQL> ALTER PLUGGABLE DATABASE pdb1 DISCARD STATE;

Case 1 Case 2 Case 3

PDB1

SHUTDOWN

STARTUP

OPENED

PDB1 OPENED

PDB1 MOUNTED

PDB1 MOUNTED

PDB1

PDB1 OPENED READ ONLY

OPENED READ ONLY

Case 1 Case 2 Case 3

PDB1 MOUNTED

PDB1 OPENED

PDB1 MOUNTED

PDB1 MOUNTED

PDB1

PDB1 OPENED READ ONLY

MOUNTED

Automatic PDB
opening

Oracle Database 23c: Administration Workshop 5 - 10

Summary

Open and close PDBs

Start up and shut down Oracle databases

Managing Database Instances

Oracle Database 23c: Administration Workshop 6 - 2

Objectives

View and modify initialization parameters in SQL*Plus

Query dynamic performance views

Describe initialization parameter files and initialization parameters

Work with the Automatic Diagnostic Repository (ADR)

Oracle Database 23c: Administration Workshop 6 - 3

Initialization Parameter Files

When you start a database instance, it reads instance configuration parameters (initialization parameters)

from an initialization parameter file (parameter file). On most platforms, parameter files are stored in the

$ORACLE_HOME/dbs directory by default.

You can use one of the following types of parameter files to start your database instance, as illustrated in

the slide:

• Server parameter file (SPFILE): An SPFILE is a binary file that is written to and read by the

database server. You can't edit it manually. An SPFILE is preferred over a PFILE because you can

change initialization parameters with ALTER SYSTEM commands in SQL*Plus, and the changes

persist when you shut down and start up the database instance. It also provides a basis for self-

tuning by Oracle Database. An SPFILE is automatically created for you by Database Configuration

Assistant (DBCA) when you create a CDB. It resides on the server on which the Oracle instance is

running. The default name of the SPFILE, which is automatically sought at startup, is

SPFILE<SID>.ora.

• Text initialization parameter file (PFILE): A PFILE is a text file containing parameter values in

name/value pairs, which the database server can read to start the database instance. Unlike an

SPFILE, the database server cannot write to and alter a PFILE. Therefore, to change parameter

values in a PFILE and make them persist during shutdown and startup, you must manually edit the

PFILE in a text editor and restart the database instance to refresh the parameter values. Your

installation includes a sample PFILE named init.ora in the default directory for parameter files.

You can use this file as a starting point for a PFILE, or you can create a PFILE from the SPFILE. If

you save your PFILE as init<SID>.ora in the default directory, the database server will

automatically use it if an SPFILE is not available. If you save the PFILE under a different name,

you'll need to specify it during startup.

Working with Initialization Parameters

Oracle Database 23c: Administration Workshop 6 - 4

Search Order for a Parameter File

The database server locates your parameter file by examining file names in the $ORACLE_HOME/dbs

directory in the following order:

1. SPFILE<SID>.ora, where SID is the system ID and identifies the instance name (for example,

ORCL)

2. SPFILE.ora

3. init<SID>.ora (PFILE)

Initialization parameters (parameters) set database limits, set databasewide defaults, specify files and

directories, and affect performance. The parameter file must, at a minimum, specify the DB_NAME

parameter. All other parameters have default values.

Types of Initialization Parameters

Parameters can be of two types: basic or advanced. In the majority of cases, you'll need to set and tune

only the 30 or so basic parameters to get reasonable performance from the database. In rare situations,

you'll need to modify one or more of the 300 or so advanced parameters to achieve optimal performance.

An example of a basic parameter is SGA_TARGET, which specifies the total memory size of all SGA

components. And example of an advanced parameter is DB_CACHE_SIZE, which specifies the size of the

default buffer pool.

Oracle Database 23c: Administration Workshop 6 - 5

Initialization Parameters

• Initialization parameters (parameters):

‒ Set database limits

‒ Set database-wide defaults

‒ Specify files and directories

‒ Affect performance

• Parameters can be of two types, basic or advanced.

‒ Tune around 30 basic parameters to get reasonable database performance.

‒ Example of a basic parameter: SGA_TARGET

‒ Example of an advanced parameter: DB_CACHE_SIZE

Derived Parameters

Some parameters are derived, meaning their values are calculated from the values of other parameters.

Normally, you shouldn't alter values for derived parameters. But if you do, the value that you specify

overrides the calculated value. For example, the default value of the SESSIONS parameter is derived from

the value of the PROCESSES parameter. If the value of PROCESSES changes, the default value of

SESSIONS changes as well, unless you override it with a specified value.

Parameter Values That Depend on the OS

Some parameter values or value ranges depend on the host operating system. For example, the

DB_FILE_MULTIBLOCK_READ_COUNT parameter specifies the maximum number of blocks that are read

in one I/O operation during a sequential scan; this parameter is platform dependent. The size of those

blocks, which is set by DB_BLOCK_SIZE, has a default value that depends on the operating system.

View

Review the information about the CONTROL_FILES parameter. Oracle Database Reference is a good

source of information about parameters. In this example, you'll learn the parameter's data type (string),

syntax (CONTROL_FILES = file name, [, file name]...), default value (operating system-dependent),

whether its modifiable (no), whether you can modify its value in a PDB (no), its range of values (1 to 8 file

names), whether it is a basic parameter (yes), and details for Oracle Real Application Clusters (multiple

instances must have the same value).

Oracle Database 23c: Administration Workshop 6 - 6

Initialization Parameters

• Derived parameters calculate their values from the values of other parameters.

‒ Example: SESSIONS is derived from PROCESSES.

• Some parameter values or value ranges depend on the host operating system.

‒ Example: DB_BLOCK_SIZE

Oracle Database 23c: Administration Workshop 6 - 7

Using ALTER SESSION or ALTER SYSTEM Commands

You modify parameters because you want to set capacity limits or improve performance. You can use the

ALTER SESSION or ALTER SYSTEM commands in SQL*Plus to modify parameters. In your own

environment, you'll likely only modify the basic initialization parameters to keep your database running

with good performance.

Increasing the values of parameters may improve your system’s performance, but increasing most

parameters also increases the SGA size. A larger SGA can improve database performance up to a point.

An SGA that is too large can degrade performance if it is swapped in and out of memory. You should set

operating system parameters that control virtual memory working areas with the SGA size in mind. The

operating system configuration can also limit the maximum size of the SGA.

Before modifying a parameter, you should query the V$PARAMETER view to learn about how you can

modify a parameter.

• The ISSES_MODIFIABLE column value tells you whether you can change the parameter for your

current session (TRUE) or not (FALSE) by using the ALTER SESSION command. You can change

some parameters at the session level, but not all. Changes are applied to your current session

immediately (dynamically) and expire when you end your session. Parameters with a value of

TRUE are referred to as session-level parameters.

Example: SQL> ALTER SESSION SET NLS_DATE_FORMAT ='mon dd yyyy';

Modifying Initialization Parameters

• Modify parameters to set capacity limits or improve performance.

‒ Use Enterprise Manager or SQL*Plus (ALTER SESSION or ALTER SYSTEM).

• Query V$PARAMETER for an initialization parameter to learn whether you can make:

‒ Session-level changes (ISSES_MODIFIABLE column)

‒ System-level changes (ISSYS_MODIFIABLE column)

‒ PDB-level changes (ISPDB_MODIFIABLE column)

The ISSYS_MODIFIABLE column value tells you when a system-level change to the parameter, made by

using the ALTER SYSTEM command, takes effect.

• IMMEDIATE means the change will take effect immediately and be applied to all current sessions.

• DEFFERED means the change will take effect in subsequent sessions.

• FALSE means the change will take effect in subsequent instances.

– You can change all parameters at the system level by using the ALTER SYSTEM command, and

the change is applied to all sessions.

– Parameters with a value of FALSE are referred to as static parameters. For static parameters,

you need to shut down and restart the database instance to implement the change. Also, the

database instance must have been started with an SPFILE.

– Example: SQL> ALTER SYSTEM SET SEC_MAX_FAILED_LOGIN_ATTEMPTS=2

SCOPE=SPFILE;

The ISPDB_MODIFIABLE column value tells you whether you can (TRUE) or can't (FALSE) modify the

parameter inside a PDB. In a non-CDB, the value of this column is NULL.

Oracle Database 23c: Administration Workshop 6 - 8

Modifying Initialization Parameters

• Use the SCOPE clause with the ALTER SYSTEM command to tell the system where to

update the system-level parameter:

‒ MEMORY

‒ SPFILE

‒ BOTH

• Use the DEFERRED keyword to set or modify the value of the parameter for future

sessions that connect to the database.

Oracle Database 23c: Administration Workshop 6 - 9

Setting the Scope in the ALTER SYSTEM Command

Use the SCOPE clause with the ALTER SYSTEM command to tell the system where to update the system-

level parameter. This location dictates how long the change will stay in effect. Scope also depends on

whether you started the database instance by using a PFILE or an SPFILE. Scope can have the following

values:

• MEMORY: This value tells the system to make the parameter change in memory only. The change

will take effect immediately, but not persist in subsequent sessions. If you started the database

instance by using a PFILE, then this is the only scope you can specify. This specification is not

allowed for static parameters.

• SPFILE: This value tells the system to make the parameter change in the SPFILE only. The change

will take effect immediately and persist after you restart the database instance. This is the only

scope allowed for static parameters.

• BOTH: This value tells the system to make the parameter change in both memory and in the

SPFILE. The change will take effect immediately and persist after you restart the database

instance. If you started the database instance by using an SPFILE, then BOTH is the default.

Using the DEFERRED Keyword

The DEFFERED keyword tells the system to make the parameter change effective only for future sessions.

You must specify DEFERRED in the ALTER SYSTEM command if the value of the ISSYS_MODIFIABLE

column is DEFERRED. If the value of that column is IMMEDIATE, then the DEFERRED keyword is optional.

If the value of that column is FALSE, then you cannot specify DEFERRED in the ALTER SYSTEM statement.

Oracle Database 23c: Administration Workshop 6 - 10

Issuing the SHOW PARAMETER Command

You can issue the SHOW PARAMETER command in SQL*Plus to view information about an initialization

parameter (for example, view a parameter's data type and default value). For instance, the following SHOW

PARAMETER command returns information about parameters whose names contain the word “para.”

SQL> SHOW PARAMETER para

NAME TYPE VALUE

------------------------------------ ----------- ---------------------

cell_offload_parameters string

fast_start_parallel_rollback string LOW

parallel_adaptive_multi_user boolean TRUE

parallel_automatic_tuning boolean FALSE

Querying Views

You can also query the V$PARAMETER view in SQL*Plus to view information about an initialization

parameter. For example, the following query against the V$PARAMETER view returns information about

parameters whose names contain the word “pool.”

Viewing Initialization Parameters

• Ways to view initialization parameters in SQL*Plus:

‒ Issue the SHOW PARAMETER command.

– Example: Find out about all the parameters whose names contain the word “para.”

‒ Query the following views:

– V$PARAMETER

– V$PARAMETER2

– V$SPPARAMETER

– V$SYSTEM_PARAMETER

– V$SYSTEM_PARAMETER2

SQL> SHOW PARAMETER para

Oracle Database 23c: Administration Workshop 6 - 11

SQL> SELECT name, value FROM v$parameter WHERE name LIKE '%pool%';

NAME VALUE

------------------------- ----------

shared_pool_size 0

large_pool_size 0

java_pool_size 0

streams_pool_size 0

shared_pool_reserved_size 15728640

…

9 rows selected.

Other views that contain parameter information include:

• V$SPPARAMETER: Displays information about the contents of the SPFILE. If you didn't use an

SPFILE to start the database instance, each row of the view will contain FALSE in the

ISSPECIFIED column.

• V$PARAMETER2: Displays information about the parameters that are currently in effect for the

session, with each parameter value appearing as a row in the view. A new session inherits

parameter values from the database instance-wide values displayed in the

V$SYSTEM_PARAMETER2 view.

• V$SYSTEM_PARAMETER: Displays information about the parameters that are currently in effect for

the database instance

• V$SYSTEM_PARAMETER2: Displays information about the initialization parameters that are

currently in effect for the instance, with each list parameter value appearing as a row in the view

Oracle Database 23c: Administration Workshop 6 - 12

Working with the Automatic Diagnostic Repository

• The Automatic Diagnostic Repository (ADR):

‒ Is a file-based repository outside the database

‒ Is a system-wide central tracing and logging repository

‒ Stores database diagnostic data such as:

– Traces

– Alert log

– Health monitor reports

Automatic Diagnostic Repository

The Automatic Diagnostic Repository (ADR) is a system-wide tracing and logging central repository for

database diagnostic data such as traces, the alert log, health monitor reports, and more.

The ADR root directory is known as the ADR base. Its location is set by the DIAGNOSTIC_DEST

initialization parameter (for example, /u01/app/oracle).

The location of an ADR home is given by the following path, which starts at the ADR base directory:

<ADR Base>/diag/product_type/db_id/instance_id

For example:

/u01/app/oracle/diag/rdbms/orcl/ORCL

ADR is a file-based repository for database diagnostic data such as traces, incident dumps and packages,

the alert log, Health Monitor reports, core dumps, and more. It has a unified directory structure across

multiple instances and multiple products—stored outside of any database. It is, therefore, available for

problem diagnosis when the database is down.

The Oracle Database server, Automatic Storage Management (ASM), Cluster Ready Services (CRS), and

other Oracle products or components store all diagnostic data in the ADR. Each instance of each product

stores diagnostic data underneath its own ADR home directory. For example, in a Real Application

Clusters environment with shared storage and ASM, each database instance and each ASM instance have

a home directory within the ADR. ADR’s unified directory structure, consistent diagnostic data formats

across products and instances, and a unified set of tools enable customers and Oracle Support to

correlate and analyze diagnostic data across multiple instances.

The ADR root directory is known as the ADR base. Its location is set by the DIAGNOSTIC_DEST

initialization parameter. If this parameter is omitted or left null, the database sets DIAGNOSTIC_DEST

upon startup as follows: If environment variable ORACLE_BASE is set, DIAGNOSTIC_DEST is set to

$ORACLE_BASE. If environment variable ORACLE_BASE is not set, DIAGNOSTIC_DEST is set to

$ORACLE_HOME/log.

diag

rdbms

SID

ADR
Base

DIAGNOSTIC_DEST

ADR
Home

$ORACLE_BASE

ADRCI log.xml alert_SID.log
V$DIAG_INFO

alert cdump (others)hmincpkg incident

metadata

incdir_1 incdir_n…

trace

DB
Name

Core dumps

Alert log data

Support Workbench

Incident
dumps

Foreground and
background process

traces, and alert log data

$ORACLE_HOME/log

Automatic Diagnostic Repository

Oracle Database 23c: Administration Workshop 6 - 13

Oracle Database 23c: Administration Workshop 6 - 14

Viewing the Alert Log

• The alert log file is a chronological log of messages about the database instance and

database, such as:

‒ Any nondefault initialization parameters used at startup

‒ All internal errors (ORA-600), block corruption errors (ORA-1578), and deadlock errors

(ORA-60) that occurred

‒ Administrative operations, such as the SQL statements CREATE, ALTER, DROP DATABASE,

and TABLESPACE, and the Enterprise Manager or SQL*Plus statements STARTUP,

SHUTDOWN, ARCHIVE LOG, and RECOVER

‒ Several messages and errors relating to the functions of shared server and dispatcher

processes

‒ Errors during the automatic refresh of a materialized view

Each database instance has an alert_SID.log file. The file is on the server with the database and is

stored in $ORACLE_BASE/diag/rdbms/<db_name>/<SID>/trace by default if $ORACLE_BASE is set.

Oracle Database uses the alert log to keep a record of these events as an alternative to displaying the

information on an operator’s console. Many systems also display this information on the console. If an

administrative operation is successful, a message is written in the alert log as “completed” along with a

time stamp.

Enterprise Manager Cloud Control monitors the alert log file and notifies you of critical errors. You can

also view the log to see noncritical error and information messages. Because the file can grow to an

unmanageable size, you can periodically back up the alert file and delete the current alert file. When the

database attempts to write to the alert file again, it creates a new one.

Note: There is an XML version of the alert log in the

$ORACLE_BASE/diag/rdbms/<db_name>/<SID>/alert directory.

ADRCI is an Oracle command-line utility that enables you to investigate problems, view health check

reports, and package and upload first-failure data to Oracle Support. You can also use the utility to view

the names of the trace files in the Automatic Diagnostic Repository (ADR) and the alert log. ADRCI has a

rich command set that you can use interactively or in scripts.

Oracle Database 23c: Administration Workshop 6 - 15

Viewing the Alert Log

• Query V$DIAG_INFO to find the location of the alert log.

‒ The path to alert_SID.log corresponds to the Diag Trace entry.

‒ The path to log.xml corresponds to the Diag Alert entry.

• You can view the alert log in a text editor or in ADRCI.

Oracle Database 23c: Administration Workshop 6 - 16

Using Trace Files

• Trace files contain:

‒ Error information (contact Oracle Support Services if an internal error occurs)

‒ Information that can provide guidance for tuning applications or an instance

• Each server and background process can write to an associated trace file.

• Trace file names for background processes are named after their processes.

‒ Exception: Trace files generated by job queue processes

• Oracle Database includes an advanced fault diagnosability infrastructure for preventing,

detecting, diagnosing, and resolving problems.

Trace Files

Each server and background process can write to an associated trace file. When a process detects an

internal error, it dumps information about the error to its trace file. If an internal error occurs and

information is written to a trace file, the administrator should contact Oracle Support Services.

All file names of trace files associated with a background process contain the name of the process that

generated the trace file. The one exception to this is trace files that are generated by job queue processes

(Jnnn).

Additional information in trace files can provide guidance for tuning applications or an instance.

Background processes always write this information to a trace file when appropriate.

Oracle Database includes an advanced fault diagnosability infrastructure for preventing, detecting,

diagnosing, and resolving problems. In particular, problems that are targeted include critical errors such

as those caused by database code bugs, metadata corruption, and customer data corruption.

When a critical error occurs, an incident number is assigned to it; diagnostic data for the error (such as

trace files) is immediately captured and tagged with this number. The data is then stored in the Automatic

Diagnostic Repository (ADR)—a file-based repository outside the database—where it can later be

retrieved by incident number and analyzed.

Purging Mechanism

The purging mechanism allows you to specify a retention policy stating:

• How old ADR contents should be before they are automatically deleted

– The long retention period is used for the relatively higher-value diagnostic data, such as

incidents and alert log (default value is 365 days).

– The short retention period is used for traces and core dumps (default value is 30 days).

Older items are deleted first. The long retention period items are typically older than any of the

items in the short retention period. So a mechanism is used in which the time periods are “scaled”

so that roughly the same percentage of each gets deleted. Some components use these periods in

slightly different ways. For instance, IPS, the packaging facility, uses the short retention period to

determine when to purge packaging metadata and the staging directory contents. However, the

age of the data is based on when the package was completed, not when it was originally created.

• Size-based retention to specify a target size for an ADR home

When purging, the old data, determined by the time-based retention periods, is deleted first. If the

size of the ADR home is still greater than the target size, diagnostics are automatically deleted

until the target size is no longer exceeded.

Oracle Database 23c: Administration Workshop 6 - 17

Using Trace Files

• When a critical error occurs:

‒ An incident number is assigned to the error

‒ Diagnostic data for the error (such as trace files) is immediately captured and

tagged with the incident number

‒ Data is stored in the ADR

• ADR files can be automatically purged by setting retention policy parameters.

Oracle Database 23c: Administration Workshop 6 - 18

Administering the DDL Log File

• Enable the capture of certain DDL statements to a DDL log file by setting

ENABLE_DDL_LOGGING to TRUE

• The DDL log contains one log record for each DDL statement.

• Two DDL logs contain the same information:

‒ XML DDL log: log.xml written to

$ORACLE_BASE/diag/rdbms/<dbname>/<SID>/log/ddl

‒ Text DDL: ddl_<sid>.log written to

$ORACLE_BASE/diag/rdbms/<dbname>/<SID>/log

The DDL log is created only if the ENABLE_DDL_LOGGING initialization parameter is set to TRUE. When

this parameter is set to FALSE, DDL statements are not included in any log. A subset of executed DDL

statements is written to the DDL log.

There are two DDL logs that contain the same information. One is an XML file, and the other is a text file.

The DDL log is stored in the log/ddl subdirectory of the ADR home.

Note: You must have a license for Oracle Database Lifecycle Management Pack to enable DDL logging.

Oracle Database 23c: Administration Workshop 6 - 19

Administering the DDL Log File

• Example:

$ more ddl_orcl.log

Thu Nov 15 08:35:47 2016

diag_adl:drop user app_user

Oracle Database 23c: Administration Workshop 6 - 20

Querying Dynamic Performance Views

• Dynamic performance views provide access to information about the changing

states of instance memory structures:

‒ Sessions, file states, and locks

‒ Progress of jobs and tasks

‒ Backup status, memory usage, and allocation

‒ System and session parameters

‒ SQL execution

‒ Statistics and metrics

The Oracle Database server maintains a dynamic set of data about the operation and performance of the

database instance. The dynamic performance views are based on virtual tables that are built from

memory structures inside the database server. They are not conventional tables that reside in a database.

This is the reason that some of them are available before a database is mounted or open.

Note: The DICT and DICT_COLUMNS views also contain the names of these dynamic performance views.

You can use dynamic performance views to answer questions such as the following:

1. For which SQL statements (and their associated numbers of executions) is the CPU time

consumed greater than 200,000 microseconds?

SQL> SELECT sql_text, executions FROM V$SQL WHERE cpu_time > 200000;

2. What are the session IDs of those sessions that are currently holding a lock that is blocking

another user, and how long have those locks been held?

SQL> SELECT sid, ctime FROM v$lock WHERE block > 0;

Oracle Database 23c: Administration Workshop 6 - 21

Querying Dynamic Performance Views

• Dynamic performance views start with the prefix V$.

• Example query: Which current sessions have logged in from the EDXX9P1 computer

on the last day?

SQL> SELECT * FROM V$SESSION

2 WHERE machine = 'EDXX9P1'

3 AND logon_time > SYSDATE - 1;

Oracle Database 23c: Administration Workshop 6 - 22

Considerations for Dynamic Performance Views

• These views are owned by the SYS user.

• Views provide information depending on the stage (NOMOUNT, MOUNT, or OPEN).

• You can query V$FIXED_TABLE to see all the view names.

• These views are often referred to as “v-dollar views.”

• Read consistency is not guaranteed on these views because the data is dynamic.

Some dynamic views provide information that is not applicable to all states of an instance or database.

For example, if an instance has just been started but no database is mounted, you can query

V$BGPROCESS to see the list of background processes that are running. But querying V$DATAFILE to see

the status of database data files would return no rows. The database must be mounted or opened for

V$DATAFILE to provide meaningful information. It is when the database is mounted that the control file

is read to obtain information about the data files associated with a database.

Some V$ views contain information that is similar to information in the corresponding DBA_ views. For

example, V$DATAFILE is similar to DBA_DATA_FILES. Note also that V$ view names are generally

singular and DBA_ view names are plural.

Data Dictionary: Overview

SELECT * FROM dictionary;

Tables

Indexes

Views

Users

Schemas

Procedures

…and so on

SYSTEM Tablespace

Metadata

The Oracle data dictionary is the metadata of the database and contains the names and attributes of all

objects in the database. The creation or modification of any object causes an update to the data

dictionary that reflects those changes. This information is stored in the base tables that are maintained by

the Oracle Database server, but you access these tables by using predefined views rather than by reading

the tables directly.

The data dictionary:

• Is used by the Oracle Database server to find information about users, objects, constraints, and

storage

• Is maintained by the Oracle Database server when object structures or definitions are modified

• Is available for use by any user to query information about the database

• Is owned by the SYS user

• Should never be modified directly by using SQL

Note: The DICTIONARY data dictionary view (or the DICT synonym for this) contains the names and

descriptions of data dictionary tables and views. Use the DICT_COLUMNS view to see the view columns

and their definitions. For complete definitions of each view, see the Oracle Database Reference. There are

over 1000 views that reference hundreds of base tables.

Oracle Database 23c: Administration Workshop 6 - 23

Oracle Database 23c: Administration Workshop 6 - 24

Querying the Oracle Data Dictionary

CDB_, DBA_, ALL_, and USER_ Views

The view prefixes, as shown in the slide, indicate the data (and how much of that data) a given user can

see.

• CDB_ views display metadata for all objects in a CDB across all PDBs.

• DBA_ views display metadata for all objects in a container or PDB.

• ALL_views display metadata for objects that the current user is privileged to see, whether the user

owns them or not. For example, if USER_A has been granted access to a table owned by USER_B,

then USER_A sees that table listed in any ALL_ view dealing with table names.

• USER_ views display metadata for all objects owned by the current user, that is, objects that are

present in the user's own schema.

Only USER_ and ALL_ views are available to any user. The CDB_ and DBA_ views are restricted to DBA

accounts.

Generally, each view set is a subset of the higher-privileged view set, row-wise and column-wise. Not all

views in a given view set have a corresponding view in the other view sets. It depends on the nature of the

information in the view. For example, there is a DBA_LOCK view, but no ALL_LOCK view, because only a

DBA would have interest in data about locks. Be sure to choose the appropriate view set to meet the need

that you have. If you have the privilege to access the DBA views, you still may want to query only the

USER_ version of the view because the results show information on objects that you own, and you may

not want other objects to be added to your result set.

Oracle Database 23c: Administration Workshop 6 - 25

The CDB_ and DBA_ views can be queried only by users with the SYSDBA or SELECT ANY DICTIONARY

privilege, or SELECT_CATALOG_ROLE role, or by users with direct privileges granted to them.

When a user connected to the root queries a CDB_* view, the query results will depend on the

CONTAINER_DATA attribute for the user. The CONTAINER_DATA clause of the SQL ALTER USER

statement is used to set and modify the users' CONTAINER_DATA attribute. In a PDB, the CDB_* views

only show objects visible through a corresponding DBA_* view.

Oracle Database 23c: Administration Workshop 6 - 26

Summary

View and modify initialization parameters in SQL*Plus

Work with the Automatic Diagnostic Repository (ADR)

Query dynamic performance views

Describe initialization parameter files and initialization parameters

Oracle Net Services: Overview

Oracle Database 23c: Administration Workshop 7 - 2

Objectives

Explain how listeners work

Explain the difference between dedicated and shared server
configurations

List the components of Oracle Net Services

Describe the tools that are used to administer Oracle Net Services

Connecting to the Database Instance

• Connection: Communication between a user process and an instance

• Session: Represents the state of a current user login to the database instance

SQL> SELECT …

Session
User

User
process

Server
process

Session

Connection

Connections and sessions are closely related to user processes but are very different in meaning.

A connection is a communication pathway between a user process and an Oracle Database instance. A

communication pathway is established by using available interprocess communication mechanisms (on a

computer that runs both the user process and Oracle Database) or network software (when different

computers run the database application and Oracle Database and communicate through a network).

A session represents the state of a current user login to the database instance. For example, when a user

starts SQL*Plus, the user must provide a valid username and password, and then a session is established

for that user. A session lasts from the time a user connects until the user disconnects or exits the

database application.

Multiple sessions can be created and exist concurrently for a single Oracle database user by using the

same username. For example, a user with the username/password of HR/HR can connect to the same

Oracle Database instance several times.

Oracle Database 23c: Administration Workshop 7 - 3

Oracle Net Services enables network connections from a client or middle-tier application to the Oracle

server. After a network session is established, Oracle Net acts as the data courier for both the client

application and the database server. It is responsible for establishing and maintaining the connection

between the client application and database server, as well as exchanging messages between them.

Oracle Net (or something that simulates Oracle Net, such as Java Database Connectivity) is located on

each computer that needs to talk to the database server.

On the client computer, Oracle Net is a background component for application connections to the

database.

On the database server, Oracle Net includes an active process called Oracle Net Listener, which is

responsible for coordinating connections between the database and external applications.

The most common use of Oracle Net Services is to allow incoming database connections. You can

configure additional net services to allow access to external code libraries (EXTPROC) and to connect the

Oracle instance to non-Oracle data sources through Oracle Heterogeneous Services.

Oracle Net Services: Overview

Application

Oracle Net

RDBMS

Oracle Net

Client or
middle tier

Database server

TCP/IP
network

Listener

Oracle Net
configuration files

Oracle Net
configuration files

Oracle Database 23c: Administration Workshop 7 - 4

Defining Oracle Net Services Components

Component Description File

Listeners A process that resides on the server whose responsibility is
to listen for incoming client connection requests and
manage traffic to the server

listener.ora

Naming methods A resolution method used by a client application to resolve a
connect identifier to a connect descriptor when attempting
to connect to a database service

Naming (net
service name)

A simple name (connect identifier) for a service that resolves
to a connect descriptor to identify the network location and
identification of a service

tnsnames.ora

(local configuration)

Profiles A collection of parameters that specifies preferences for
enabling and configuring Oracle Net features on the client or
server

sqlnet.ora

The following Oracle Net Services components can be configured by using Enterprise Manager Cloud

Control and Oracle Net Manager:

• Listener: Configuration of the listener includes specifying the listener name, protocol addresses it

is accepting connection requests on, and services (database or nondatabase service) it is listening

for.

• Naming methods

• Naming (net service name)

• Profiles

The Oracle Net Configuration Assistant configures the listener, naming methods, directory server usage,

and a local tnsnames.ora file during the installation of Oracle Database software.

Oracle Database 23c: Administration Workshop 7 - 5

Tools for Configuring and Managing Oracle Net Services

• Enterprise Manager Cloud Control

• Oracle Net Manager

• Oracle Net Configuration Assistant

• Listener Control Utility

Use the following tools and applications to manage your Oracle Network configuration:

• Enterprise Manager Cloud Control: Provides an integrated environment for configuring and

managing Oracle Net Services. Use Enterprise Manager to configure Oracle Net Services for any

Oracle home across multiple file systems and administer listeners.

• Oracle Net Manager: Provides a graphical user interface (GUI) through which you can configure

Oracle Net Services for an Oracle home on a local client or a server host

• Oracle Net Configuration Assistant: Launched by Oracle Universal Installer when you install the

Oracle software. During a typical database installation, Oracle Net Configuration Assistant

automatically configures a listener called LISTENER that has a TCP/IP listening protocol address

for the database. If you perform a custom installation, Oracle Net Configuration Assistant prompts

you to configure a listener name and protocol address of your choice.

• Listener Control Utility: Used to start, stop, and view the status of the listener process

Oracle Database 23c: Administration Workshop 7 - 6

Oracle Net Listener: Overview

Listener

<ORACLE_HOME>/network/admin/listener.ora

./sqlnet.ora

Oracle databases

Oracle Net
configuration files

Enterprise Manager
Cloud Control or Oracle

Net Manager

Oracle Net Listener (or simply the listener) is the gateway to the Oracle instance for all nonlocal user

connections. A single listener can service multiple database instances and thousands of client

connections.

You can use Enterprise Manager Cloud Control or Oracle Net Manager to configure the listener and

specify log file locations.

Advanced administrators can also configure Oracle Net Services by manually editing the configuration

files, if necessary, with a standard operating system (OS) text editor such as vi or gedit.

Oracle Database 23c: Administration Workshop 7 - 7

Oracle Database 23c: Administration Workshop 7 - 8

The Default Listener

• During the creation of an Oracle database, the Oracle Net Configuration Assistant

utility creates a local listener named LISTENER.

• LISTENER is automatically populated with available database services through a

feature called dynamic service registration.

• LISTENER listens on the following TCP/IP protocol address:

ADDRESS=(PROTOCOL=tcp)(HOST=host_name)(PORT=1521))

• Without any configuration, you can access your database instance immediately

through LISTENER.

• If the listener name is LISTENER and it cannot be resolved, a protocol address of

TCP/IP and a port number of 1521 is assumed.

Because the configuration parameters in the listener.ora file have default values, it is possible to start

and use a listener with no configuration. This default listener has a name of LISTENER, supports no

services on startup, and listens on the following TCP/IP protocol address:

(ADDRESS=(PROTOCOL=tcp)(HOST=host_name)(PORT=1521))

Comparing Dedicated and Shared Server Architecture

Server process

Server process

Server process

Client
or middle

tier

Dedicated Server

Web
browser Dispatchers

Shared Server

One server
process for
each client

Server processServer process
Pool of
server

processes
for the
clients

Dedicated Server Configuration

In a dedicated server configuration, as illustrated in the slide, one server process handles requests for a

single client process. Each server process uses system resources, including CPU cycles and memory. In a

heavily loaded system, the memory and CPU resources that are used by dedicated server processes can

be prohibitive and negatively affect the system’s scalability. If your system is being negatively affected by

the resource demands of the dedicated server architecture, you have the following options:

• Increase system resources by adding more memory and additional CPU capability

• Use the Oracle Shared Server Process architecture

Shared Server Configuration

A shared server configuration, as illustrated in the slide, enables multiple client processes to share a small

number of server processes. Each service that participates in the shared server process architecture has

at least one dispatcher process (and usually more). When a connection request arrives, the listener does

not spawn a dedicated server process. Instead, the listener maintains a list of dispatchers that are

available for each service name, along with the connection load (number of concurrent connections) for

each dispatcher. Connection requests are routed to the lightest loaded dispatcher that is servicing a given

service name. Users remain connected to the same dispatcher for the duration of a session.

Unlike dedicated server processes, a single dispatcher can manage hundreds of user connections.

Dispatchers do not actually handle the work of user requests. Instead, they pass user requests to a

common queue located in the shared pool portion of the SGA. Shared server processes take over most of

the work of dedicated server processes, pulling requests from the queue and processing them until they

are complete.

Oracle Database 23c: Administration Workshop 7 - 9

Oracle Database 23c: Administration Workshop 7 - 10

Summary

Explain how listeners work

Explain the difference between dedicated and shared server
configurations

List the components of Oracle Net Services

Describe the tools that are used to administer Oracle Net Services

Configuring Naming Methods

Objectives

Configure local naming for database connections

Describe Oracle Net Services naming methods

Establishing Oracle Network Connections

• To make a client or middle-tier connection, Oracle Net requires the client to know the:

‒ Host where the listener is running

‒ Port that the listener is monitoring

‒ Protocol that the listener is using

‒ Name of the service that the listener is handling

Names
resolution

For an application to connect to a service through Oracle Net Listener, it must have information about

that service, including the address or host where the listener resides, the protocol that the listener

accepts, and the port that the listener monitors. After the listener is located, the final piece of information

that the application needs is the name of the service to which it wants to connect.

Oracle Net names resolution is the process of determining this connection information.

Oracle Database 23c: Administration Workshop 8 - 3

Connecting to an Oracle Database Instance

Database server

finance.us.flowers.com

An Oracle database is represented to a client as a service. A database can have one or more services

associated with it. Databases are identified by a service name that is specified by the SERVICE_NAMES

parameter in the initialization parameter file. The service name defaults to the global database name,

which is a name that comprises the database name (DB_NAME parameter value) and the domain name

(DB_DOMAIN parameter value).

To connect to a database service, clients use a connect descriptor that provides the location of the

database and the name of the database service. Clients can use the connect descriptor or a name that

resolves to the connect descriptor (as discussed later in this lesson).

The following example shows a connect descriptor that enables clients to connect to a database service

called finance.us.flowers.com.

(DESCRIPTION=

(ADDRESS=(PROTOCOL=tcp)(HOST=flowers-server)(PORT=1521))

(CONNECT_DATA=

(SERVICE_NAME=finance.us.flowers.com)))

Oracle Database 23c: Administration Workshop 8 - 4

Name Resolution

flowers-server

LISTENER

port 1521

Name resolution

finance

finflowers =(DESCRIPTION=

(ADDRESS=(PROTOCOL=tcp)(HOST=flowers-

server)(PORT=1521))

(CONNECT_DATA=

(SERVICE_NAME=finance.us.flowers.com)))

CONNECT jsmith/jspass@finflowers

Users initiate a connection request to the Oracle database instance by sending a connect string. A

connect string includes a username and password, along with a connect identifier. A connect identifier

can be the connect descriptor itself or a name that resolves to a connect descriptor. One of the most

common connect identifiers is a net service name, which is a simple name for a service.

When a net service name is used, connection processing takes place by mapping the net service name to

a connect descriptor. The mapping information can be stored in one or more repositories of information

and is resolved by using a naming method.

Oracle Database 23c: Administration Workshop 8 - 5

Establishing a Connection

Listener

Incoming connection
request

After Oracle Net names resolution is complete, a connection request is passed from the user or middle-

tier application (hereafter referred to as the user process) to the listener. The listener receives a CONNECT

packet and checks whether that CONNECT packet is requesting a valid Oracle Net service name.

If the service name is not requested (as in the case of a tnsping request), the listener acknowledges the

connect request and does nothing else. If an invalid service name is requested, the listener transmits an

error code to the user process.

Oracle Database 23c: Administration Workshop 8 - 6

Server
process

User Sessions

PGA

Listener

User session

User process

If the CONNECT packet requests a valid service name, the listener spawns a new process to deal with the

connection. This new process is known as the server process. The listener connects to the process and

passes the initialization information, including the address information for the user process. At this point,

the listener no longer deals with the connection, and all work is passed to the server process.

The server process checks the user’s authentication credentials (usually a password), and if the

credentials are valid, a user session is created.

Dedicated server process: With the session established, the server process now acts as the user’s agent

on the server. The server process is responsible for:

• Parsing and running any SQL statements issued through the application

• Checking the database buffer cache for data blocks required to perform SQL statements

• When required, reading necessary data blocks from data files on the disk into the database buffer

cache portion of the System Global Area (SGA), if the blocks are not already present in the SGA

• Managing all sorting activity: The Sort Area is a memory area that is used to work with sorting; it is

contained in a portion of memory that is associated with the Program Global Area (PGA).

• Returning results to the user process in such a way that the application can process the

information

• Reading auditing options and reporting user processes to the audit destination

Oracle Database 23c: Administration Workshop 8 - 7

Naming Methods

• Oracle Net supports several methods for resolving connection information:

‒ Easy connect naming: Uses a TCP/IP connect string

‒ Local naming: Uses a local configuration file

‒ Directory naming: Uses a centralized LDAP-compliant directory server

Client/application server

Oracle Net

Oracle Net
configuration files

Oracle Net provides support for the following naming methods:

• Easy connect naming: The easy connect naming method enables clients to connect to an Oracle

Database instance by using a TCP/IP connect string consisting of a host name, optional port, and

service name as follows:

CONNECT username/password@host[:port][/service_name]

The easy connect naming method requires no configuration.

• Local naming: The local naming method stores connect descriptors (identified by their net service

name) in a local configuration file named tnsnames.ora on the client.

• Directory naming: To access a database service, the directory naming method stores connect

identifiers in a centralized directory server that is compliant with the Lightweight Directory Access

Protocol (LDAP).

• External naming: The external naming method stores net service names in a supported non-

Oracle naming service. Supported third-party services include:

– Network Information Service (NIS) External Naming

– Distributed Computing Environment (DCE) Cell Directory Services (CDS)

Oracle Database 23c: Administration Workshop 8 - 8

Easy Connect

• Is enabled by default

• Requires no client-side configuration

• Supports only TCP/IP (no SSL)

• Offers no support for advanced connection options such as:

‒ Connect-time failover

‒ Source routing

‒ Load balancing

SQL> CONNECT hr/hr@db.us.oracle.com:1521/dba11g

No Oracle Net
configuration files

With Easy Connect, you supply all the information that is required for the Oracle Net connection as part of

the connect string. Easy Connect connection strings take the following form:

<username>/<password>@<hostname>:<listener port>/<service name>

The listener port and service name are optional. If the listener port is not provided, Oracle Net assumes

that the default port of 1521 is being used. If the service name is not provided, Oracle Net assumes that

the database service name and host name provided in the connect string are identical.

Assuming that the listener uses TCP to listen on port 1521 and the SERVICE_NAMES=db and

DB_DOMAIN=us.oracle.com instance parameters, the connect string shown in the slide can be

shortened:

SQL> connect hr/hr@db.us.oracle.com

Note: The SERVICE_NAMES initialization parameter can accept multiple comma-separated values. Only

one of those values must be db for this scenario to work.

Oracle Database 23c: Administration Workshop 8 - 9

Local Naming

• Requires a client-side names-resolution file

• Supports all Oracle Net protocols

• Supports advanced connection options such as:

‒ Connect-time failover

‒ Source routing

‒ Load balancing

Oracle Net
configuration files

SQL> CONNECT hr/hr@orcl

With local naming, the user supplies an alias for the Oracle Net service. Oracle Net checks the alias against

a local list of known services and, if it finds a match, converts the alias into host, protocol, port, and

service name.

One advantage of local naming is that the database users need to remember only a short alias rather

than the long connect string required by Easy Connect.

The local list of known services is stored in the following text configuration file:

<oracle_home>/network/admin/tnsnames.ora

This is the default location of the tnsnames.ora file, but the file can be located elsewhere by using the

TNS_ADMIN environment variable.

Local naming is appropriate for organizations in which Oracle Net service configurations do not change

often.

Oracle Database 23c: Administration Workshop 8 - 10

Directory Naming

• Requires LDAP with Oracle Net names resolution information loaded:

‒ Oracle Internet Directory

‒ Microsoft Active Directory Services

• Supports all Oracle Net protocols

• Supports advanced connection options

SQL> CONNECT hr/hr@orcl

LDAP
directory

Oracle Net
configuration files

With directory naming, the user supplies an alias for the Oracle Net service. Oracle Net checks the alias

against an external list of known services and, if it finds a match, converts the alias into host, protocol,

port, and service name. Like local naming, database users need to remember only a short alias.

Directory naming is appropriate for organizations in which Oracle Net service configurations change

frequently.

Oracle Database 23c: Administration Workshop 8 - 11

Using Database Services to Manage Workloads

Database server

finance.us.flowers.com

sales.us.flowers.com

A database service is a named representation of a specific workload or application hosted by one or more

database instances. Services enable you to group database workloads and route a particular work request

to an appropriate instance.

Associating multiple services with one database enables the following functionality:

• A single database can be identified in different ways by different clients.

• System resources can be limited or reserved. This level of control enables better allocation of

resources to clients requesting one of the services.

You can define services for PDBs. Each database service name must be unique in a CDB, and each

database service name must be unique within the scope of all the CDBs whose instances are reached

through a specific listener.

Oracle Database 23c: Administration Workshop 8 - 12

Creating Database Services

Service

DBMS_SERVICE.CREATE_SERVICE

You can define a service by using the DBMS_SERVICE package and then use the net service name to

assign applications to a service.

If your single-instance database is being managed by Oracle Restart or your Oracle RAC database is being

managed by Oracle Clusterware, you should use the Server Control (SRVCTL) utility to create, modify, or

remove the service.

Oracle Database 23c: Administration Workshop 8 - 13

Summary

Configure local naming for database connections

Describe Oracle Net Services naming methods

Oracle Database 23c: Administration Workshop 8 - 14

Configuring and Administering the Listener

Oracle Database 23c: Administration Workshop 9 - 2

Objectives

Configure listeners for dynamic or static service registration

Explain how listeners work

Oracle Net Services enables network connections from a client or middle-tier application to the Oracle

server. After a network session is established, Oracle Net acts as the data courier for both the client

application and the database server. It is responsible for establishing and maintaining the connection

between the client application and database server, as well as exchanging messages between them.

Oracle Net (or something that simulates Oracle Net, such as Java Database Connectivity) is located on

each computer that needs to talk to the database server.

On the client computer, Oracle Net is a background component for application connections to the

database.

On the database server, Oracle Net includes an active process called Oracle Net Listener, which is

responsible for coordinating connections between the database and external applications.

The most common use of Oracle Net Services is to allow incoming database connections. You can

configure additional net services to allow access to external code libraries (EXTPROC) and to connect the

Oracle instance to non-Oracle data sources through Oracle Heterogeneous Services.

Review: Oracle Net Services Overview

Application

Oracle Net

RDBMS

Oracle Net

Client or
middle tier

Database server

TCP/IP
network

Listener

Oracle Net
configuration files

Oracle Net
configuration files

Oracle Database 23c: Administration Workshop 9 - 3

Oracle Net Listener: Overview

Listener

<ORACLE_HOME>/network/admin/listener.ora

./sqlnet.ora

Oracle databases

Oracle Net
configuration files

Enterprise Manager
Cloud Control or

Oracle Net Manager

Oracle Net Listener (or simply the listener) is the gateway to the Oracle instance for all nonlocal user

connections. A single listener can service multiple database instances and thousands of client

connections.

You can use Enterprise Manager Cloud Control or Oracle Net Manager to configure the listener and

specify log file locations.

Advanced administrators can also configure Oracle Net Services by manually editing the configuration

files, if necessary, with a standard operating system (OS) text editor such as vi or gedit.

Oracle Database 23c: Administration Workshop 9 - 4

The default listener has a name of LISTENER, manages no services on startup, and listens on the

following TCP/IP protocol address:

(ADDRESS=(PROTOCOL=tcp)(HOST=host_name)(PORT=1521))

Oracle Database 23c: Administration Workshop 9 - 5

The Default Listener

• During the creation of an Oracle database, the Oracle Net Configuration Assistant

creates a local listener named LISTENER.

• LISTENER is automatically populated with available database services through a

feature called dynamic service registration.

• LISTENER listens on the following TCP/IP protocol address:

ADDRESS=(PROTOCOL=tcp)(HOST=host_name)(PORT=1521))

• Without any configuration, you can access your database instance immediately

through LISTENER.

Benefits of Dynamic Service Registration

Service registration offers the following benefits:

• Connect-time failover: Because the listener always monitors the state of the instances, service

registration facilitates automatic failover of a client connect request to a different instance if one

instance is down.

• Connection load balancing: Service registration enables the listener to forward client connect

requests to the least-loaded instance and dispatcher or dedicated server. Service registration

balances the load across the service handlers and nodes.

• High availability for Oracle Real Application Clusters and Oracle Data Guard

The Role of the LREG Process

The Listener Registration (LREG) process polls the listeners to see if they are running and, if so, registers

the following database service information to them:

• Database instance name

• Database service names available on the database instance (for example, ORCL.example.com

and PDB1.example.com)

• Current and maximum load for the database instance

• Service handlers (dispatchers and dedicated servers) available to the database instance

LREG registers with the listeners after the database instance mounts the database and every 60 seconds

afterward. You can use the ALTER SYSTEM REGISTER command to initiate service registration

immediately after the listener is started.

Oracle Database 23c: Administration Workshop 9 - 6

Configuring Dynamic Service Registration

• By default, an Oracle database instance is configured to use dynamic service registration (service

registration), which allows the Oracle database instance to identify its available services to listeners

automatically.

• The LREG process polls the listeners to see if they are running and, if so, registers database service

information to them.

• Dynamic service registration registers, by default, all PDB services to the same listener. If you stop

that listener, you stop access to all the PDB services.

• General steps to configure dynamic service registration:

‒ Make sure that the INSTANCE_NAME , LOCAL_LISTENER, REMOTE_LISTENER, and SERVICE_NAMES

initialization parameters are properly configured.

‒ Configure protocol addresses (end points) in the server-side tnsnames.ora file.

• Use the ALTER SYSTEM REGISTER command to initiate service registration immediately after the

listener is started.

How to Configure Dynamic Service Registration

The LREG process learns of the available listeners through the LOCAL_LISTENER and

REMOTE_LISTENER parameters. These parameters specify listener alias names for local listeners and

remote listeners. Both parameters can have multiple values. These aliases resolve to protocol addresses

(end points) in the server-side tnsnames.ora file.

Note: Clients can also have a tnsnames.ora file, which you'll learn about in a later lesson.

Through dynamic service registration, the LREG process is then able to pass on information about the

available database services to all listeners on those end points.

For example, assume LOCAL_LISTENER = LISTENER_HOST1 and REMOTE_LISTENER =

LISTENER_HOST2. In the tnsnames.ora file, the LISTENER_HOST1 and LISTENER_HOST2 aliases are

resolved to two different end points on two different machines. Notice that the CONNECT_DATA section is

not included.

LISTENER_HOST1 =

(ADDRESS = (PROTOCOL = TCP)(HOST = host1.example.com)(PORT = 1521))

LISTENER_HOST2 =

(ADDRESS = (PROTOCOL = TCP)(HOST = host2.example.com)(PORT = 1521))

For dynamic service registration to work properly, make sure that the INSTANCE_NAME,

LOCAL_LISTENER, REMOTE_LISTENER, and SERVICE_NAMES parameters are configured properly. By

default, the installer populates the SERVICE_NAME parameter with the global database name (for

example, ORCL.example.com), which provides one database service name that users can use to access

the database instance. You can specify multiple service names for the database instance, however, if you

want to distinguish among different uses of the same database. Oracle Database Resource Manager lets

you view information about the user activity for each service name.

Dynamic service registration does not use the listener.ora file.

Oracle Database 23c: Administration Workshop 9 - 7

Configuring Static Service Registration

• Static service registration is a method for configuring listeners to obtain their service

information manually.

‒ You can create a listener for a particular PDB.

‒ Static service registration might be required for some services, such as external procedures and

heterogeneous services (for non-Oracle systems).

• With static registration, the listener has no knowledge of whether its database services

exist. It only knows that it supports them. The Listener Control utility shows the

services status as UNKNOWN.

• General steps to configure static service registration:

1. In listener.ora, define a listener and its protocol addresses.

2. In listener.ora, also create a SID_LIST_<listener name> section that lists the database

services for the listener.

Advantages of Static Service Registration

The following are some advantages of using static service registration:

• Static service registration enables you to create a listener for a particular PDB.

• Sometimes you may need the database instance up and running without anyone being able to log

in. As soon as it is started up, dynamic service registration will automatically start registering all

the database services to the listener, making the database instance available to users.

• There is also a difference in error messages returned between a static listener (which can point to

a database service that is down) and a dynamic listener entry (which shows nonexistence) when

the database instance is shut down. The first case knows about the database service's existence

and gives you an error message with useful information. The second case has no information and

can't distinguish between a typo you may have made in the service name and whether it actually

even exists.

Required Use of Static Service Registration

Static service registration is required for the following:

• Use of external procedure calls

• Use of Oracle Heterogeneous Services

• Use of Oracle Data Guard

• Remote database startup from a tool other than Oracle Enterprise Manager Cloud Control

Oracle Database 23c: Administration Workshop 9 - 8

How to Configure Static Service Registration

To create a static listener, you configure the listener.ora file. In that file, you define two sections.

First, define the listener and its protocol addresses. Then, create a SID_LIST_<listener name>

section that lists the database services for the listener. For each service, include the following parameters:

• GLOBAL_DBNAME: The PDB's service name (for example, PDB1.example.com)

• ORACLE_HOME: The Oracle home directory

• SID_NAME: The name of your database instance (for example, ORCL)

By default, the listener.ora file is stored in the $ORACLE_HOME/network/admin directory on the

database instance machine.

LISTENER_SALESPDBS =

(DESCRIPTION_LIST =

(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = host1.example.com)(PORT = 1561))

))

SID_LIST_LISTENER_SALESPDBS =

(SID_LIST =

(SID_DESC =

(GLOBAL_DBNAME = PDB1.example.com)

(SID_NAME = ORCL)

(ORACLE_HOME = /u01/app/oracle/product/23.3.0/dbhome_1)

)

(SID_DESC =

(GLOBAL_DBNAME = PDB2.example.com)

(SID_NAME = ORCL)

(ORACLE_HOME = /u01/app/oracle/product/23.3.0/dbhome_1)

)

)

Oracle Database 23c: Administration Workshop 9 - 9

Oracle Database 23c: Administration Workshop 9 - 10

Summary

Configure listeners for dynamic or static service registration

Explain how listeners work

Configuring a Shared Server Architecture

Objectives

Enable shared server

Explain the difference between dedicated and shared server
configurations

Control shared server operations

Oracle Database 23c: Administration Workshop 10 - 2

Shared Server Architecture: Overview

• When should you consider configuring the shared server architecture?

‒ System is overloaded.

‒ System has limited memory.

• How does the shared server architecture address these issues?

‒ Client processes share server processes.

‒ Few processes are required to support the client load.

When client load causes a strain on memory and other system resources, you may be able to alleviate

load issues by implementing the shared server architecture. This architecture enables client processes to

share server processes, so the number of supported users is increased. A small pool of server processes

can serve a large number of clients. This is useful when a system is overloaded or has limited memory.

Oracle Database 23c: Administration Workshop 10 - 3

Comparing Dedicated and Shared Server Architecture: Review

Server process

Server process

Server process

Client
or middle

tier

Dedicated Server

Web
browser

Dispatchers

Shared Server

One server
process for
each client

Server processServer process
Pool of
server

processes for
the clients

Dedicated Server Configuration

In a dedicated server configuration, as illustrated in the slide, one server process handles requests for a

single client process. Each server process uses system resources, including CPU cycles and memory. In a

heavily loaded system, the memory and CPU resources that are used by dedicated server processes can

be prohibitive and negatively affect the system’s scalability. If your system is being negatively affected by

the resource demands of the dedicated server architecture, you have the following options:

• Increase system resources by adding more memory and additional CPU capability

• Use the Oracle Shared Server Process architecture

Shared Server Configuration

A shared server configuration, as illustrated in the slide, enables multiple client processes to share a small

number of server processes. Each service that participates in the shared server process architecture has

at least one dispatcher process (and usually more). When a connection request arrives, the listener does

not spawn a dedicated server process. Instead, the listener maintains a list of dispatchers that are

available for each service name, along with the connection load (number of concurrent connections) for

each dispatcher. Connection requests are routed to the lightest loaded dispatcher that is servicing a given

service name. Users remain connected to the same dispatcher for the duration of a session.

Unlike dedicated server processes, a single dispatcher can manage hundreds of user connections.

Dispatchers do not actually handle the work of user requests. Instead, they pass user requests to a

common queue located in the shared pool portion of the SGA. Shared server processes take over most of

the work of dedicated server processes, pulling requests from the queue and processing them until they

are complete.

Oracle Database 23c: Administration Workshop 10 - 4

Enabling Shared Server

• SHARED_SERVERS specifies the minimum number of shared servers that will be

created when the instance is started.

• Enable shared server by setting the SHARED_SERVERS initialization parameter to a

value greater than 0 in the initialization parameter file or by using the ALTER

SYSTEM command.

• If SHARED_SERVERS is not in the initialization parameter file and DISPATCHERS is

set to 1 or greater, then shared server is enabled by default.

The SHARED_SERVERS initialization parameter specifies the minimum number of shared servers that you

want created when the instance is started. After instance startup, the Oracle Database server can

dynamically adjust the number of shared servers based on how busy existing shared servers are and the

length of the request queue.

If SHARED_SERVERS is not included in the initialization parameter file at database startup, but

DISPATCHERS is included and it specifies at least one dispatcher, then shared server is enabled. In this

case, the default for SHARED_SERVERS is 1.

Oracle Database 23c: Administration Workshop 10 - 5

Controlling Shared Server Operations

Initialization Parameter Used To

DISPATCHERS Configure dispatcher processes

SHARED_SERVERS Specify the initial number of shared servers to start and the
minimum number of shared servers to keep

MAX_SHARED_SERVERS Specify the maximum number of shared servers that can run
simultaneously

SHARED_SERVER_SESSIONS Specify the total number of shared server user

sessions that can run simultaneously

CIRCUITS Set a maximum limit on the number of virtual circuits that can
be created in shared memory

The following initialization parameters are used to control shared server operations:

• DISPATCHERS: At least one dispatcher process is required for a shared server configuration. If you

do not specify a dispatcher, but you enable shared server by setting SHARED_SERVER to a

nonzero value, then by default the Oracle Database server creates one dispatcher for the TCP

protocol.

• SHARED_SERVERS: You can set the value in the initialization parameter file or use the ALTER

SYSTEM command to configure the initial number of shared servers. After instance startup, the

Oracle Database server can dynamically adjust the number of shared servers based on how busy

existing shared servers are and the length of the request queue.

• MAX_SHARED_SERVERS: Use this parameter to limit the maximum number of shared servers that

can be automatically created by PMON. The primary reason to limit the number of shared servers

is to reserve resources for other processes.

• SHARED_SERVER_SESSIONS: Use this parameter to limit the number of concurrent shared server

user sessions. It provides a way for you to reserve database sessions for dedicated servers.

• CIRCUITS: You can use this parameter to protect shared memory by limiting the number of

virtual circuits that can be created in shared memory.

Oracle Database 23c: Administration Workshop 10 - 6

SGA and PGA Usage

• Oracle Shared Server: User session data is held in the SGA.

• Be sure to consider shared server memory requirements when sizing the SGA.

User Session
Data

Cursor

State

Sort Area Hash
Area

Create Bitmap Area

Bitmap Merge Area

UGA

System Global Area (SGA) PGA

Stack
space

Because a user session may have requests processed by multiple shared server processes, most of the

memory structures that are usually stored in the PGA must be in a shared memory location (by default, in

the shared pool). However, if the large pool is configured or if SGA_TARGET is set for automatic memory

management, these memory structures are stored in the large pool portion of the SGA.

The contents of the SGA and PGA are different in a shared server configuration from those in a dedicated

server configuration. In a shared server configuration:

• Text and parsed forms of all SQL statements are stored in the SGA

• The cursor state contains runtime memory values for the SQL statement, such as rows retrieved

• User-session data includes security and resource usage information

• The stack space contains local variables for the process

The change in the SGA and PGA is transparent to the user; however, if you are supporting multiple users,

you need to increase the LARGE_POOL_SIZE initialization parameter. Each shared server process must

access the data spaces of all sessions so that any server can handle requests from any session. Space is

allocated in the SGA for each session’s data space. You limit the amount of space that a session can

allocate by setting the PRIVATE_SGA resource.

Note: You do not need to set LARGE_POOL_SIZE when automatic memory management or automatic

shared memory management are configured.

Oracle Database 23c: Administration Workshop 10 - 7

Shared Server Configuration Considerations

• Certain types of database work must not be performed using shared servers:

‒ Database administration

‒ Backup and recovery operations

‒ Batch processing and bulk-load operations

‒ Data warehouse operations

Dispatcher Dedicated server process

A dedicated server process is good for long-running queries and administrative tasks and is faster than a

shared server process in that there is always a server process ready to do work. However, an idle process

or too many dedicated processes can result in an inefficient use of resources. Using shared server mode

on the database server eliminates the need for a dedicated server process for each user connection,

requires less memory for each user connection, and enables a larger number of users on a system with

constrained memory. Dedicated server processes and shared server processes are enabled at the same

time. Oracle XML DB (XDB) requires shared server processes, and the Oracle database is already

configured to use them. You will need to modify the initialization parameters for other users to use

shared server processes.

The Oracle Shared Server architecture is an efficient process and memory use model, but it is not

appropriate for all connections. Because of the common request queue and the fact that many users may

share a dispatcher response queue, shared servers do not perform well with operations that must deal

with large sets of data, such as warehouse queries or batch processing. Backup and recovery sessions

that use Oracle Recovery Manager also deal with very large data sets and must use dedicated

connections. Many administration tasks must not (and cannot) be performed by using shared server

connections. These include starting up and shutting down the instance, creating tablespaces and data

files, maintaining indexes and tables, analyzing statistics, and many other tasks that are commonly

performed by the DBA. All DBA sessions must choose dedicated servers.

Oracle Database 23c: Administration Workshop 10 - 8

Summary

Enable shared server

Explain the difference between dedicated and shared server
configurations

Control shared server operations

Oracle Database 23c: Administration Workshop 10 - 9

Practice Overview

• This practice covers the following topics:

• Configuring Shared Server Mode

• Configuring Clients to Use a Shared Server

Oracle Database 23c: Administration Workshop 10 - 10

Creating PDBs from Seed

Objectives

Create a new PDB from the PDB seed

Oracle Database 23c: Administration Workshop 11 - 2

Provisioning New Pluggable Databases

• Create a new PDB from the PDB seed.

• Plug an unplugged PDB into the same CDB or into another CDB.

• Plug a non-CDB in a CDB as a PDB.

• Clone a PDB from another PDB (local or remote CDB, hot or cold).

• Relocate a PDB from a CDB into another CDB.

• Proxy a PDB from another PDB.

There are different methods to provision new PDBs in a CDB.

• Create a new PDB from the PDB seed, PDB$SEED, for a new application implementation as an

example. This type of PDB creation is nearly instantaneous.

• Plug an unplugged PDB into another CDB or into the same CDB. For example, you have to

upgrade a PDB to the latest Oracle version, but you do not want to upgrade all PDBs. Instead of

upgrading a CDB from one release to another, you can unplug a PDB from one Oracle Database

release and then plug it into a newly created CDB at a higher release. If you mistakenly unplugged

a PDB, you can replug it into the original CDB.

• Plug non-CDBs into a CDB as PDBs, as part of a migration strategy. It is also a good way to

consolidate several non-CDBs into a CDB.

• Clone a PDB from another PDB of the same CDB. For example, you want to test an application

patch. You first clone your production application in a cloned PDB and patch the cloned PDB to

test.

• Relocate a PDB into another CDB to better allocate resources.

• Proxy a PDB. A proxy PDB provides fully functional access to another PDB in a remote CDB. This

feature enables you to build location-transparent applications that can aggregate data from

multiple sources that are in the same data center or distributed across data centers.

Oracle Database 23c: Administration Workshop 11 - 3

Tools

• To provision new PDBs, you can use:

‒ SQL*Plus

‒ SQL Developer

‒ Enterprise Manager Cloud Control

‒ Enterprise Manager Database Express

‒ Database Configuration Assistant (DBCA)

– Clone from PDB seed

– Clone from an existing PDB

– Plug an unplugged PDB

There are different tools to provision new PDBs in a CDB:

• SQL*Plus

• SQL Developer

• Enterprise Manager Cloud Control

• Enterprise Manager Database Express

To create a new PDB from the PDB seed or from an existing PDB or by plugging an unplugged PDB

method, you can also use Database Configuration Assistant (DBCA).

Oracle Database 23c: Administration Workshop 11 - 4

Creating a New PDB from PDB$SEED

• Copies the data files from PDB$SEED data

files

• Creates tablespaces:

– SYSTEM

– SYSAUX

– UNDO

• Creates a full catalog including metadata

pointing to Oracle-supplied objects

• Creates common users:

– SYS

– SYSTEM

• Creates a local user (PDBA), granted local

PDB_DBA role

• Creates a new default service

CDB root

CDB1

Data files / Tempfiles Redo log

files

Control

files

UNDO

TEMP

PDB$SEED

Data files

USERS

PDB1

Data files

Create

PDB1

from
PDB$SEED

UNDO

UNDO

SYSTEM

SYSAUX

SYSTEM

SYSAUX

SYSTEM

SYSAUX

The creation of a new PDB from the PDB seed is nearly instantaneous. The operation copies the data files

from the READ ONLY seed PDB to the target directory defined in the CREATE PLUGGABLE DATABASE

statement.

It creates tablespaces such as SYSTEM, to store a full catalog including metadata pointing to Oracle-

supplied objects, SYSAUX for local auxiliary data, and UNDO for local undo segments.

It creates default schemas and common users that exist in the PDB seed, SYS that continues to have all

super user privileges, and SYSTEM that can administer the PDB.

It creates a local user (the PDBA), granted a local PDB_DBA role. Until the PDB SYS user grants privileges

to the local PDB_DBA role, the new PDBA cannot perform any operation other than connecting to the

PDB.

A new default service is also created for the PDB.

Oracle Database 23c: Administration Workshop 11 - 5

Using the FILE_NAME_CONVERT Clause

Create a new PDB from the seed using FILE_NAME_CONVERT:

1. Connect to the CDB root as a common user with the CREATE PLUGGABLE

DATABASE system privilege:

2. Use views to verify:

Note: The STATUS of the PDB is NEW.

SQL> CREATE PLUGGABLE DATABASE pdb1

ADMIN USER admin1 IDENTIFIED BY p1 ROLES=(CONNECT)

FILE_NAME_CONVERT = ('PDB$SEEDdir', 'PDB1dir');

SQL> CONNECT / AS SYSDBA

SQL> SELECT * FROM cdb_pdbs;

SQL> SELECT * FROM cdb_tablespaces;

SQL> SELECT * FROM cdb_data_files;

SQL> ALTER PLUGGABLE DATABASE pdb1 OPEN RESTRICTED;

SQL> CONNECT sys@pdb1 AS SYSDBA

SQL> CONNECT admin1@pdb1

The steps to create a new PDB from the PDB seed are the following:

1. Connect to the CDB root as a common user with the CREATE PLUGGABLE DATABASE system

privilege and execute the CREATE PLUGGABLE DATABASE statement as shown in the slide. The

ADMIN USER clause defines the PDBA user created in the new PDB with the CONNECT and

PDB_DBA roles (empty role). The clause FILE_NAME_CONVERT designates first the source

directory of the PDB seed data files and second the destination directory for the new PDB data

files.

2. When the statement completes, use views to verify that the PDB is correctly created. The

CDB_PDBS view displays the list of the PDBs and the CDB_TABLESPACES view displays the list of

the tablespaces of the new PDB (SYSTEM, SYSAUX, UNDO). The CDB_PDBS view shows the STATUS

of the new PDB: it is NEW. The PDB has never been opened. It must be opened in READ WRITE or

RESTRICTED mode for Oracle to perform processing that is needed to complete the integration of

the PDB into the CDB and mark it NORMAL. An error will be returned if an attempt is made to open

the PDB read only.

3. Still connected to the CDB root, open the PDB. Then, try to connect to the new PDB under

common user, SYS, which always exists in any PDB, or the user defined in the ADMIN USER

clause, admin1.

Oracle Database 23c: Administration Workshop 11 - 6

Using OMF or the PDB_FILE_NAME_CONVERT Parameter

• Use OMF: DB_CREATE_FILE_DEST = '/u01/app/oradata/CDB1/pdb1’

Or

• Use the initialization parameter: PDB_FILE_NAME_CONVERT =

'/u01/app/oradata/CDB1/seed','/u01/app/oradata/CDB1/pdb1'

Or

• Use the clause in the CREATE PLUGGABLE DATABASE command:

CREATE_FILE_DEST = '/u01/app/oradata/CDB1/pdb1'

SQL> CREATE PLUGGABLE DATABASE pdb1

ADMIN USER pdb1_admin IDENTIFIED BY p1 ROLES=(CONNECT);

If you use Oracle Managed Files (OMF) or PDB_FILE_NAME_CONVERT:

1. Connect to the CDB root as SYS

2. With OMF, set the DB_CREATE_FILE_DEST initialization parameter to a target directory for the

data files of the new PDB

3. Without OMF, set the PDB_FILE_NAME_CONVERT initialization parameter to both the source

directory of the PDB seed data files and the target directory for the new PDB data files. In the

example shown, the /u01/app/oradata/CDB1/pdb1 directory must exist.

4. Then, use the cdb_pdbs view to verify that the new PDB and its tablespaces exist:

SQL> SELECT * FROM cdb_pdbs;

SQL> SELECT * FROM cdb_tablespaces;

SQL> SELECT * FROM cdb_data_files;

Oracle Database 23c: Administration Workshop 11 - 7

Summary

Create a new PDB from the PDB seed

Oracle Database 23c: Administration Workshop 11 - 8

Using Other Techniques to Create PDBs

Objectives

Unplug and plug or clone a non-CDB

Clone a regular PDB

Perform hot cloning

Perform near-zero downtime PDB relocation

Create and use a proxy PDB

Unplug and plug a regular PDB

Oracle Database 23c: Administration Workshop 12 - 2

Cloning Regular PDBs

CDB1

CDB root

Data files/Tempfiles Redo Log
files

Control
files

PDB$SEED

Data files/Tempfiles

PDB1

Data files/Tempfiles

Create
PDB3
from
PDB1

1. Define the data file location:

• Set DB_CREATE_FILE_DEST= 'PDB3dir'

• Set PDB_FILE_NAME_CONVERT='PDB1dir',
'PDB3dir'

• Use the CREATE_FILE_DEST= 'PDB3dir' clause

2. Connect to the CDB root to close PDB1.

3. Clone PDB3 from PDB1.

4. Open PDB3 in read write mode.

Note: Clone metadata only by using NO DATA.

PDB3

Data files/Tempfiles

SQL> CREATE PLUGGABLE DATABASE pdb3 FROM pdb1

CREATE_FILE_DEST = 'PDB3dir';

SQL> ALTER PLUGGABLE DATABASE pdb3 OPEN;

PDB3 owns:

• SYSTEM, SYSAUX, UNDO tablespaces

• Full catalog
• SYS, SYSTEM common users

• Same local administrator name
• New service name

This technique copies a source PDB from a CDB and plugs the copy into the same CDB. The source PDB is

in the local CDB.

The steps to clone a PDB within the same CDB are the following:

1. Define the location for the data files of the new PDB:

– Set initialization parameters: DB_CREATE_FILE_DEST= 'PDB3dir' if you are using Oracle

Managed Files (OMF) or PDB_FILE_NAME_CONVERT= 'PDB1dir', 'PDB3dir' for non-

OMF.

– Use the CREATE_FILE_DEST clause during the CREATE PLUGGABLE DATABASE statement

(OMF).

– Use the FILE_NAME_CONVERT=(’pdb1dir’,’ pdb3dir’) clause to define the directory of

the source files to copy from PDB1 and the target directory for the new files of PDB3 (non-

OMF).

2. Connect to the CDB root as a common user with the CREATE PLUGGABLE DATABASE privilege.

3. Use the command CREATE PLUGGABLE DATABASE to clone the pdb3 from pdb1.

4. Then open the new pdb3 with the command ALTER PLUGGABLE DATABASE OPEN.

Note: NO DATA allows PDB metadata cloning, which is an option that can be used to clone an

empty PDB and later import data for testing.

Oracle Database 23c: Administration Workshop 12 - 3

Migrating Data from a Non-CDB into a CDB

Possible methods:

• Data Pump (TTS or TDB or full export/import)

• Plugging (XML file definition with DBMS_PDB)

• Cloning
• Replication

Entities created in the new PDB:

• Tablespaces: SYSTEM, SYSAUX, UNDO

• A full catalog
• Common users: SYS, SYSTEM

• A local administrator (PDBA)
• A new default service

PDB2

Data files/Tempfiles

impdp TTS

expdp TTS

Replication

Plug

CDB root

Data files/Tempfiles Redo Log
files

Control
files

PDB$SEED

Data files/Tempfiles

Create
PDB2
from
ORCL

Data files Control
files

Redo Log
files

XML file

DBMS_PDB

Dump file

CDB1

There are different possible methods to migrate data from a non-CDB database into a CDB.

Whichever method is used, you have to get the non-CDB into a transactionally consistent state and open

it in restricted mode.

• It is appropriate to use Oracle Data Pump when:

‒ Both source and target databases are different endian

‒ The source character set is not equal to the target character set and is not a binary subset of

the target

‒ Use either transportable tablespace (TTS) or full conventional export/import or full

transportable database (TDB), provided that in the last one, any user-defined object resides in

a single user-defined tablespace. Data Pump full transportable database does not support

movement of XDB or AWR repositories. Only user-generated XML schemas are moved.

• In other cases, using the DBMS_PDB package is the easiest option. The DBMS_PDB package

constructs an XML file describing the non-CDB data files to plug the non-CDB into the CDB as a

PDB. It is also a good way to quickly consolidate several non-CDBs into a CDB.

• Cloning non-CDBs in a CDB is a good way to keep the non-CDB and therefore have the

opportunity to compare the performance between the new PDB and the original non-CDB or at

least wait until you consider that the PDB can work appropriately.

Oracle Database 23c: Administration Workshop 12 - 4

The technique with the DBMS_PDB package creates an unplugged PDB from an Oracle Database non-

CDB. The unplugged PDB can then be plugged into a CDB (of the same version) as a new PDB. To use this

technique, the non-CDB must be at release Oracle Database 12c or later.

Running the DBMS_PDB.DESCRIBE procedure on the non-CDB generates an XML file that describes the

future PDB. You can plug in the unplugged PDB in the same way that you can plug in any unplugged

PDB, using the XML file and the non-CDB data files. The steps are the following:

1. Connect to non-CDB ORCL and ensure that the non-CDB ORCL is in read-only mode.

2. Execute the DBMS_PDB.DESCRIBE procedure, providing the file name that will be generated. The

XML file contains the list of data files to be plugged. The XML file and the data files described in

the XML file comprise an unplugged PDB.

3. Connect to the target CDB to plug the unplugged ORCL as PDB2.

4. Before plugging the unplugged non-CDB, make sure it can be plugged into a CDB by using the

DBMS_PDB.CHECK_PLUG_COMPATIBILITY procedure. Execute the CREATE PLUGGABLE

command using the clause USING 'XMLfile.xml'. The list of data files from ORCL is read from

the XMLfile to locate and name the data files of PDB2.

5. Run the ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql script to delete unnecessary

metadata from the PDB SYSTEM tablespace. This script is required for plugging non-CDBs only

and must be run before the PDB is opened for the first time.

6. Open PDB2 to verify that the application tables are in PDB2.

Plugging a Non-CDB into CDB Using DBMS_PDB

CDB1
1. Open ORCL in READ ONLY mode.

2. Connect to the target CDB root as a common user with the
CREATE PLUGGABLE DATABASE privilege.

3. Plug in the unplugged ORCL as PDB2.

4. Run the noncdb_to_pdb.sql script in PDB2.

5. Open PDB2.

Note: The STATUS of the PDB is CONVERTING.DBMS_PDB.DESCRIBE

Plug

XML metadata file

SQL> EXEC DBMS_PDB.DESCRIBE ('/tmp/ORCL.xml')

SQL> CREATE PLUGGABLE DATABASE PDB2

USING '/tmp/ORCL.xml';

SQL> CONNECT sys@PDB2 AS SYSDBA

SQL> @$ORACLE_HOME/rdbms/admin/noncdb_to_pdb

PDB2

Data files/Tempfiles

CDB root

Data files/Tempfiles Redo Log
files

Control
files

PDB$SEED

Data files/Tempfiles

Create
PDB2
from
ORCL

Data files Control
files

Redo Log
files

ORCL

Oracle Database 23c: Administration Workshop 12 - 5

CDB1

PDB2

Data files/Tempfiles

CDB root

Data file /Tempfiles Redo Log
files

Control
files

PDB$SEED

Data files/Tempfiles

Create
PDB2
from
ORCL

Replicating a Non-CDB into a CDB by Using GoldenGate

1. Connect to the CDB root as a common user with

the CREATE PLUGGABLE DATABASE privilege.

2. Create new PDB2 (from PDB$SEED).

3. Open PDB2 in read/write mode.

4. Configure an Oracle GoldenGate unidirectional

replication environment from ORCL to PDB2.

5. Check application data.

Replication

SQL> CONNECT sys@PDB2

SQL> SELECT * FROM dba_tables;

SQL> SELECT * FROM HR.EMP;

Data files Control
files

Redo Log
files

ORCL

These are the steps for replicating the data from a non-CDB to a PDB by using Oracle GoldenGate

replication:

1. Connect to the CDB root as a common user with the CREATE PLUGGABLE DATABASE privilege.

2. Create the new PDB2 from the PDB seed that will be the container for ORCL data.

3. Open PDB2 in read/write mode.

4. Configure an Oracle GoldenGate unidirectional replication environment with the non-CDB ORCL as

the source database and the PDB2 as the destination database.

5. When the data at PDB2 catches up with the data at the non-CDB ORCL, switch to PDB2.

See Oracle Database Concepts for additional information about Oracle GoldenGate.

Oracle Database 23c: Administration Workshop 12 - 6

CDB1

PDB2

Data files/Tempfiles

CDB root

Data files/Tempfiles Redo Log
files

Control
files

PDB$SEED

Data files/Tempfiles

Create
PDB2
from
ORCL

PDB_ORCL owns:
• SYSTEM, SYSAUX, UNDO tablespaces
• Full catalog
• A temporary tablespace
• SYS, SYSTEM common users
• New service name

Cloning a Non-CDB or Remote PDB

1. Set ORCL in READ ONLY mode.

2. Connect to the CDB to create the database link:

3. Clone the non-CDB:

4. Run the noncdb_to_pdb.sql script.

5. Open PDB_ORCL in read/write mode.

SQL> CREATE DATABASE LINK link_orcl

CONNECT TO system IDENTIFIED BY ***

USING 'orcl';

SQL> CREATE PLUGGABLE DATABASE pdb_orcl

FROM NON$CDB@link_orcl

CREATE_FILE_DEST = '…/PDB_orcl';

SQL> CONNECT sys@pdb_orcl AS SYSDBA

SQL> @$ORACLE_HOME/rdbms/admin/noncdb_to_pdb

SQL> ALTER PLUGGABLE DATABASE pdb_orcl OPEN;

Data files Control
files

Non-CDB ORCL

This technique copies a non-CDB or remote PDB and plugs the copy into a CDB.

The steps to clone a non-CDB or remote PDB into a CDB are the following:

1. Set the non-CDB or remote PDB in READ ONLY mode.

2. Connect to the root of the target CDB as a common user with the CREATE PLUGGABLE DATABASE

privilege.

3. Create a database link that allows a connection to the remote non-CDB or PDB as a user with the

CREATE PLUGGABLE DATABASE privilege.

4. Use the CREATE PLUGGABLE DATABASE command to clone the non-CDB as described in the slide.

If you clone a remote PDB, use the source PDB name in place of NON$CDB. Ensure that the new

PDB does not conflict with the name of any container within the CDB.

5. If the cloned source is a non-CDB, it is necessary to run the

$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql script.

6. Then open the new PDB with the ALTER PLUGGABLE DATABASE command.

7. Finally, you can re-open the non-CDB or remote PDB.

There are additional clone options such as SNAPSHOT COPY. Refer to the Oracle Database

Administrator’s Guide.

Oracle Database 23c: Administration Workshop 12 - 7

You can use DBCA to clone a remote PDB. The DBCA operation executes the following steps:

1. Checks the presence of the database link. If the database link exists, DBCA drops it.

2. Creates the database link

3. Creates the PDB from the remote PDB

4. Checks the status of the cloned PDB to verify that it is in mounted mode

5. Opens the cloned PDB

The user in the local target CDB must have the CREATE PLUGGABLE DATABASE privilege in the CDB

root.

The remote CDB must use local undo mode. The remote CDB must be in archivelog mode. The common

user in the remote PDB that the database link connects to must have the CREATE PLUGGABLE

DATABASE and CREATE SESSION privileges.

Using DBCA to Clone a Remote PDB

$ dbca –silent -createPluggableDatabase

-createFromRemotePDB -remotePDBName PDB1

-remoteDBConnString CDB1

-sysDBAUserName system

-sysDBAPassword password

-remoteDBSYSDBAUserName SYS

-remoteDBSYSDBAUserPassword password

-dbLinkUsername c##remote_user

-dbLinkUserPassword password

-sourceDB CDB2 -pdbName PDB2

1. Create a common user with privileges in the remote CDB CDB1.

2. Use DBCA to clone the remote PDB1 from CDB1 to PDB2.

CDB1

PDB1

Remote source PDB1

CDB2

PDB2

Remote PDB1 cloned
as PDB2

UNDO1

UNDO1

D
B

 L
in

k

CDB root

CDB root

SYSAUX
SYSTEM USERS

SYSAUX
SYSTEM USERS

Oracle Database 23c: Administration Workshop 12 - 8

PDB$SEED

Plugging an Unplugged Regular PDB into CDB

Unplug PDB1 from CDB1:

1. Connect to CDB1 as a common user.

2. Verify that PDB1 is closed.

3. Drop PDB1 from CDB1.

Plug PDB1 into CDB2:

1. Connect to CDB2 as a common user.

2. Use the DBMS_PDB package to check the
compatibility of PDB1with CDB2.

3. Open PDB1 in read/write mode.

CDB1

CDB root

PDB$SEED

USERS

Unplug PDB1

CDB2

CDB root

PDB1

Data files

Plug PDB1

SYSAUX
SYSTEM

USERSSYSAUX
SYSTEM

UNDO

UNDO

SQL> ALTER PLUGGABLE DATABASE pdb1

UNPLUG INTO 'xmlfile1';

SQL> CREATE PLUGGABLE DATABASE pdb1

USING 'xmlfile1' NOCOPY;

PDB1

Data files

XML file

You can create a PDB in a CDB by using the unplugging/plugging method.

Unplugging a PDB disassociates the PDB from a CDB. You unplug a PDB when you want to move the PDB

to a different CDB or when you no longer want the PDB to be available.

The first step is to unplug PDB1 from CDB1. The second step is to plug PDB1 into CDB2.

To unplug PDB1 from CDB1, first connect to the source CDB root and check that the PDB is closed using

the V$PDBS view. Then use ALTER PLUGGABLE DATABASE with the UNPLUG clause to specify the

database to unplug and the XML file to unplug it into. The STATUS column in CDB_PDBS of the

unplugged PDB will be UNPLUGGED. A PDB must be dropped from the CDB before it can be plugged back

into the same CDB. If the PDB is plugged into another CDB, the PDB does not need to be dropped if the

data files are copied.

Before plugging PDB1 into CDB2, you can optionally check whether the unplugged PDB is compatible with

CDB2 by using the DBMS_PDB.CHECK_PLUG_COMPATIBILITY function.

To plug PDB1 into CDB2, connect to CDB2 root and execute the CREATE PLUGGABLE DATABASE pdb1

USING ’xmlfile1.xml’ command. The last step is to open the PDB.

Oracle Database 23c: Administration Workshop 12 - 9

Plugging in a PDB Using an Archive File

1. Unplugging a PDB into a single archive file includes:

– XML file

– Data files

2. Plugging in the PDB requires only the archive file.

CDB_SOURCE

PDB1

Data files

PDB_NEW

Data files

CDB_TARGET SQL> CREATE PLUGGABLE DATABASE pdb_new

USING '/tmp/pdb1.pdb';

SQL> ALTER PLUGGABLE DATABASE pdb1

UNPLUG INTO '/tmp/pdb1.pdb';

pdb1.pdbArchive file

When a PDB is unplugged, all the data files associated with the PDB along with the PDB manifest must be

copied or moved individually over to the remote server where it will be plugged into another CDB. You

can choose to create a single PDB archive file, a compressed file with the .pdb extension, which contains

the PDB manifest and all the data files. When plugging in a PDB, the presence of a .pdb file is interpreted,

and the PDB is plugged into the CDB. You can choose to run the PDB plug-in compatibility test directly on

the PDB archive without extracting the PDB manifest file from the archive.

This feature provides ease of managing the unplugging and plugging of PDBs across CDBs.

Oracle Database 23c: Administration Workshop 12 - 10

Cloning Remote PDBs in Hot Mode

Remote source PDB still up and fully functional:

1. Connect to the target CDB2 root to create the
database link to CDB1.

2. Switch the shared undo mode to local undo mode
in both the CDBs.

3. Clone the remote PDB1 to PDB3.

4. Open PDB3 in read-only or read/write mode.

Incremental refreshing:

• Manual

• Automatic (predefined interval)

CDB1

PDB1

Remote source
PDB1

CDB2

PDB3

Hot Cloned
PDB1

UNDO1

UNDO1

CDB root

CDB root

SYSAUX
SYSTEM USERS

SYSAUX
SYSTEM USERS

D
B

 L
in

k

R
e

fre
sh

Cloning a production PDB to get a test PDB copies the remote production PDB into a CDB while the

remote production PDB is still up and fully functional.

Hot remote cloning requires both CDBs to switch from shared undo mode to local undo mode, which

means that each PDB uses its own local undo tablespace.

Refreshable Copy

In addition, hot cloning allows incremental refreshing in that the cloned copy of the production database

can be refreshed at regular intervals. Incremental refreshing means refreshing an existing clone from a

source PDB at a point in time that is more recent than the original clone creation to provide fresh data. A

refreshable copy PDB can be opened only in read-only mode.

Propagating changes from the source PDB can be performed in two ways:

• Manually (on demand)

• Automatically at predefined time intervals

If the source PDB is not accessible at the moment the refresh copy needs to be updated, archive logs are

read from the directory specified by the REMOTE_RECOVERY_FILE_DEST parameter to refresh the

cloned PDB.

You can also clone an existing PDB by using Database Configuration Assistant (DBCA).

Oracle Database 23c: Administration Workshop 12 - 11

Near-Zero Downtime PDB Relocation

Use a single statement to relocate PDB1 from CDB1

into CDB2:
1. Switch the shared undo mode to local undo mode in

both CDBs.
2. Set ARCHIVELOG mode in both CDBs.
3. Grant SYSOPER to the user connected to CDB1 via the

database link created in CDB2.
4. Connect to CDB2 as a common user to create the

database link.
5. Use the CREATE PLUGGABLE DATABASE statement

with the RELOCATE clause.
6. Open PDB1 in read/write mode.

There is no need to:
• Unplug the PDB from the source CDB
• Copy or transfer the data files to a new location
• Plug the PDB in the target CDB
• Drop the source PDB from the source CDB

CDB1

PDB1

Relocate PDB1 from
CDB1 to CDB2

PDB1

Data files

UNDO1

UNDO1

SYSAUX
SYSTEM USERS

SYSAUX
SYSTEM USERS

CDB root

CDB root

CDB2

Data files

D
B

 L
in

k

To get the same result as unplugging and plugging a PDB from a remote source CDB into another CDB,

you can take advantage of near-zero downtime PDB relocation.

A single DDL statement can relocate a PDB, using the “pull” mode, connected to the CDB where the PDB

will be relocated to pull it from the CDB where the PDB exists, managing existing connections and

migrating new connections without requiring any changes to the application.

There are two relocation methods:

• Normal availability mode

– When the newly created PDB is opened in read/write mode for the first time, the source PDB is

automatically closed and dropped, and the relocation operation is completed with the

relocated PDB being fully available. This is the “normal availability” default mode.

– This method can be used to relocate application PDBs.

• Maximum availability mode

− The maximum availability mode reduces application impact by handling the migration of

connections, preserving the source CDB in mount state to guarantee connection forwarding of

the listener to the remote listener where the PDB is relocated. In this case, you cannot create a

PDB with the same name as the source PDB because it will conflict with the listener forwarding.

It is expected that connect strings are updated at a time that is convenient for the application.

After this is done and all the clients connect to the new host without forwarding, the DBA can

drop the source PDB.

Oracle Database 23c: Administration Workshop 12 - 12

− If AVAILABILITY MAX is specified during the CREATE PLUGGABLE DATABASE RELOCATE

command, additional handling is performed to ensure smooth migration of workload and

persistent connection forwarding from the source to the target. The PDB is always first opened

in read-only mode. This makes the PDB available as a target for new connections before the

source PDB is closed. During this operation, listener information of the target CDB is

automatically sent to the source and a special forwarding registration is performed with the

source PDB’s current listener. New connections to the existing listener are automatically

forwarded to connect to the new target. This forwarding persists even after the relocation

operation has been completed and effectively allows for no changes to connect strings.

− It is still recommended that connect strings are updated eventually at a time that is convenient

for the application, but availability is not dependent on when this action is performed.

PDB relocation requires enabling the local undo mode and ARCHIVELOG mode in both CDBs.

Oracle Database 23c: Administration Workshop 12 - 13

You can use DBCA to relocate a remote PDB. The DBCA operation executes the following steps:

1. Checks the presence of the database link. If the database link exists, DBCA drops it.

2. Creates the database link

3. Creates the PDB from the remote PDB

4. Checks the status of the cloned PDB to verify that it is in mounted mode

5. Opens the relocated PDB

The user in the local database must have the CREATE PLUGGABLE DATABASE privilege in the CDB root

container. The remote and local databases must be in archivelog mode. The common user in the remote

database that the database link connects to must have the CREATE PLUGGABLE DATABASE, SESSION,

and SYSOPER privileges.

The local and remote databases must either have the same options installed or the remote database must

have a subset of those present on the local database.

Using DBCA to Relocate a Remote PDB

$ dbca -silent -relocatePDB

-remotePDBName PDB1 -remoteDBConnString CDB1

-sysDBAUserName system

-sysDBAPassword password

-remoteDBSYSDBAUserName SYS

-remoteDBSYSDBAUserPassword password

-dbLinkUsername c##remote_user

-dbLinkUserPassword password

-sourceDB CDB2 -pdbName PDB1

Use DBCA to relocate the remote PDB1 from CDB1 into CDB2.

$ export ORACLE_SID=CDB2

CDB1

PDB1

CDB2

PDB1

UNDO1

UNDO1

D
B

 L
in

k

CDB root

CDB root

Relocate PDB1
from CDB1

➔

to CDB2

Data files

Data files

Oracle Database 23c: Administration Workshop 12 - 14

Proxy PDB: Query Across CDBs Proxying Root Replica

➔ Retrieves rows from the shared table whose data is stored in application PDBs in

the application root and replicas in CDBs

ROBOTS DOLLS PX_APP_RR

CDB1

App_Root

CDB2

App_RR DOODLES

SELECT sum(revenue), year, CDB$NAME, CON$NAME

FROM CONTAINERS(sales_data)

WHERE year = 2014 GROUP BY year, CDB$NAME, CON$NAME;

Create proxy PDB

Revenue Year CDB$NAME CON$NAME

15000000 2014 CDB1 ROBOTS

20000000 2014 CDB2 DOODLES

10000000 2014 CDB1 DOLLS

Create application root replica

Create application PDB

2

3

1

A proxy PDB allows you to execute SQL statements in a remote PDB as if it were a local PDB in the CDB.

This type of PDB is very helpful to query data that is spread over PDBs in different CDBs.

In the example in the slide, when connected to the toys_root application root, a query on a table shared

in the application PDBs, robots, dolls, and doodles cannot retrieve rows from the remote doodles if

two conditions are not satisfied:

• An application root replica is created in the remote CDB to replicate the application root and,

therefore, the application common entities such as tables, users, and privileges.

• A proxy PDB is created in the application root in the local CDB to reference the application root

replica in the remote CDB.

When you are connected to the toys_root application root and you query from a shared table of the

application installed on the toys_root application root, the query fetches rows from the two local

application PDBs, robots and dolls, and from the application proxy PDB, px_app_rr, executing the

query in the remote root replica and, therefore, from the doodles application PDB.

Oracle Database 23c: Administration Workshop 12 - 15

Creating a Proxy PDB

A proxy PDB allows execution in a proxied PDB.
1. Switch the shared undo mode to local undo mode in

both CDBs.

2. Set the ARCHIVELOG mode in both CDBs.

3. Connect to CDB1 and create a database link (to
CDB2).

4. Create the PXPDB1 proxy PDB in CDB1 as a view
referencing the entire proxied PDB1 in CDB2.

5. Execute all the statements in the PXPDB1 proxy PDB
context to have them executed in the proxied PDB1
PDB in CDB2.

CDB1

PXPDB1

CDB2

PDB1

Data files

SQL> CONNECT sys@pxpdb1 AS SYSDBA

SQL> ALTER PLUGGABLE DATABASE pxpdb1 OPEN;

SQL> SELECT * FROM app.c;

Data files

USERS

SQL
execution

CDB root

CDB root

Table APP.C

CODE

C4

UNDO1

UNDO1

SQL> CONNECT sys@cdb1 AS SYSDBA

SQL> CREATE PLUGGABLE DATABASE pxpdb1 AS PROXY

FROM pdb1@link_cdb2;

SYSAUX
SYSTEM

SYSAUX
SYSTEM

Data files copy

Creating a proxy PDB copies the data files of the SYSTEM, SYSAUX, and UNDO tablespaces of the proxied

PDB. A proxy PDB can be created, altered, and dropped from the CDB root like any regular PDB.

The database link must be created in the CDB root that will contain the proxy PDB, and the database link

connects either to the remote CDB root or to the remote application container or to the remote

application PDB.

Any ALTER PLUGGABLE DATABASE statement issued from within the proxy PDB when the PDB is opened

is executed in the proxied PDB. The AS PROXY clause is used to create a PDB as a proxy PDB. The

IS_PROXY_PDB column in CDB_PDBS displays if a PDB is a proxy PDB.

Oracle Database 23c: Administration Workshop 12 - 16

Unplug and plug or clone a non-CDB

Unplug and plug a regular PDB

Perform hot cloning

Clone a regular PDB

Summary

Perform near-zero downtime PDB relocation

Create and use a proxy PDB

Oracle Database 23c: Administration Workshop 12 - 17

Managing PDBs

Objectives

Evaluate the impact of parameter value changes

Change the modes and settings of PDBs

Drop PDBs

Configure host name and port number per PDB

Oracle Database 23c: Administration Workshop 13 - 2

Changing the PDB Mode

• After closing a PDB, open it in:

‒ Restricted read/write mode

‒ Read-only mode

SQL> CONNECT sys@pdb1 AS SYSDBA

SQL> ALTER PLUGGABLE DATABASE CLOSE;

SQL> ALTER PLUGGABLE DATABASE OPEN RESTRICTED;

SQL> SELECT name, open_mode FROM v$pdbs;

NAME OPEN_MODE RES

---------------------- ---------- ---

PDB1 READ WRITE YES

SQL> CONNECT / AS SYSDBA

SQL> ALTER PLUGGABLE DATABASE ALL OPEN READ ONLY;

You can change the mode of each PDB to perform specific administration operations.

The first example opens the PDB in the RESTRICTED READ WRITE mode. This allows only users with the

RESTRICTED SESSION privilege to connect. This allows the local administrator of the PDB to manage

files movement, backups preventing sessions from accessing the data.

Use the V$PDBS view to verify that the PDB is in RESTRICTED READ WRITE open mode.

The second example opens the PDB in a READ ONLY mode. Any session connected to the PDB can

perform read-only transactions only.

To change the open mode, first close the PDB. You can apply the same open mode to all PDBs or to only

some of them.

Oracle Database 23c: Administration Workshop 13 - 3

Modifying PDB Settings

• Bring a PDB data file online:

• Change the PDB default tablespace:

• Change the PDB default temporary tablespace:

• Set the PDB storage limit:

• Change the global name:

SQL> ALTER PLUGGABLE DATABASE DATAFILE '/u03/pdb1_01.dbf' ONLINE;

SQL> ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE pdb1_tbs;

SQL> ALTER PLUGGABLE DATABASE DEFAULT TEMPORARY TABLESPACE temp_tbs;

SQL> ALTER PLUGGABLE DATABASE STORAGE (MAXSIZE 2G);

SQL> ALTER PLUGGABLE DATABASE RENAME GLOBAL_NAME TO pdbAPP1;

You can modify the settings of each PDB without necessarily changing the mode of the PDB. You have to

be connected in the PDB to perform the changes in the settings.

The first example uses a DATAFILE clause to bring the specified data file online.

The second example sets the default permanent tablespace to PDB1_TBS for the PDB.

The third example sets the default temporary tablespace to TEMP_TBS for the PDB.

The fourth example sets the storage limit for all tablespaces that belong to the PDB to two gigabytes.

The fifth example changes the global database name of the PDB to PDBAPP1. The new global database

name for this PDB must be different from that of any container in the CDB. This operation can be done

only in restricted mode.

Oracle Database 23c: Administration Workshop 13 - 4

Impact of Changing Initialization Parameters

• A single server parameter file (SPFILE) per CDB

• PDB value changes:

‒ Only when ISPDB_MODIFIABLE=TRUE

‒ Loaded in memory after PDB close

‒ Stored in dictionary after CDB shutdown

SQL> CONNECT sys@pdb1 AS SYSDBA

Connected.

SQL> ALTER SYSTEM SET ddl_lock_timeout=10;

System altered.

SQL> SHOW PARAMETER ddl_lock_timeout

NAME TYPE VALUE

----------------------------- ----------- ---------

ddl_lock_timeout boolean 10

There is a single server parameter file (SPFILE) per CDB. Values of the initialization parameters are

associated with the CDB root and apply to the CDB root and serve as default values for all other

containers.

You can set different parameter values in PDBs when the value of the ISPDB_MODIFIABLE column in

V$PARAMETER is TRUE. These are set in the scope of a PDB; then they are remembered properly across

PDB close/open and across bouncing the CDB instance. They also travel with clone and unplug/plug

operations. Other initialization parameters can be set for the CDB root only.

Connect to the CDB root to view all containers’ specific parameter values.

SQL> SELECT db_uniq_name, pdb_uid, name, value$ FROM pdb_spfile$;

DB_UNIQ_NA PDB_UID NAME VALUE$

---------- ---------- ------------------------------------ ------

cdb2 3072231663 ddl_lock_timeout 10

cdb2 4030283986 ddl_lock_timeout 20

cdb2 3485283967 ddl_lock_timeout 30

Oracle Database 23c: Administration Workshop 13 - 5

In this example, a different value of the DDL_LOCK_TIMEOUT parameter is set in PDB2. The change is

maintained after the PDB is closed and reopened. The CON_ID column in the V$SYSTEM_PARAMETER

view shows the DDL_LOCK_TIMEOUT value in each container, the CDB root, PDB1, and PDB2.

Changing Initialization Parameters: Example

SQL> CONNECT sys@pdb2 AS SYSDBA

SQL> ALTER SYSTEM SET ddl_lock_timeout=20 SCOPE=BOTH;

SQL> ALTER PLUGGABLE DATABASE CLOSE;

SQL> ALTER PLUGGABLE DATABASE OPEN;

SQL> CONNECT / AS SYSDBA

SQL> SELECT value, ispdb_modifiable, con_id FROM v$system_parameter

WHERE name = 'ddl_lock_timeout';

VALUE ISPDB CON_ID

-------------------- ----- ----------

0 TRUE 0

10 TRUE 3

20 TRUE 4

Oracle Database 23c: Administration Workshop 13 - 6

Using the ALTER SYSTEM Command in a PDB

• Some statements change the way a PDB operates:

• Some ALTER SYSTEM statements can be executed in a PDB but affect the whole CDB:

• All other ALTER SYSTEM statements affect the entire CDB and must be executed by a

common user in the CDB root.

ALTER SYSTEM Affecting the PDB only Objects Impacted

ALTER SYSTEM FLUSH SHARED_POOL Only for objects of the PDB

ALTER SYSTEM FLUSH BUFFER_CACHE Only for buffers of the PDB

ALTER SYSTEM ENABLE/DISABLE RESTRICTED SESSION Only for sessions of the PDB

ALTER SYSTEM KILL SESSION Only for sessions of the PDB

ALTER SYSTEM SET parameter Only for parameter of the PDB

ALTER SYSTEM CHECKPOINT Affects all data files except those in read only or offline

ALTER SYSTEM SWITCH LOGFILE Operation not allowed from within a pluggable database

You can use an ALTER SYSTEM statement to change the way a PDB operates. When the current

container is a PDB, you can run the following ALTER SYSTEM statements:

ALTER SYSTEM FLUSH SHARED_POOL / BUFFER_CACHE

ALTER SYSTEM ENABLE / DISABLE RESTRICTED SESSION

ALTER SYSTEM SET USE_STORED_OUTLINES

ALTER SYSTEM SUSPEND / RESUME

ALTER SYSTEM CHECK DATAFILES

ALTER SYSTEM REGISTER

ALTER SYSTEM KILL SESSION

ALTER SYSTEM DISCONNECT SESSION

ALTER SYSTEM SET initialization_parameter

Some ALTER SYSTEM statements, such as ALTER SYSTEM CHECKPOINT, can be run from within a PDB

but actually affect the whole CDB.

Other ALTER SYSTEM statements, such as ALTER SYSTEM SWITCH LOGFILE, affect the entire CDB

and must be run by a common user in the CDB root such as ALTER SYSTEM SWITCH LOG unless you set

the NONCDB_COMPATIBLE parameter to TRUE. This parameter influences ALTER DATABASE statements

behavior in the same way.

Oracle Database 23c: Administration Workshop 13 - 7

Configuring Host Name and Port Number per PDB

• The host name and port number settings for a PDB are important only if proxy PDBs

will reference the PDB.

• The host name and port number can be reset to their default:

SQL> ALTER PLUGGABLE DATABASE CONTAINERS HOST = <host_name>;

SQL> ALTER PLUGGABLE DATABASE CONTAINERS PORT = <port_nb>;

SQL> ALTER PLUGGABLE DATABASE CONTAINERS HOST RESET;

SQL> ALTER PLUGGABLE DATABASE CONTAINERS PORT RESET;

During PDB creation, the HOST=<host_name_string> and PORT=<port_number> clauses can be used

to indicate the host name and port number to be used by internal database links from proxy PDBs that

reference the new PDB. By default, altering the host name and port number for a PDB does not have any

effect on internal database links that already have been created to point to this PDB. Only subsequently

created internal database links will be affected by the new host name and port number. A proxy PDB will

have to be re-created in order for it to pick up the new port number for its target PDB.

Oracle Database 23c: Administration Workshop 13 - 8

When you no longer need the data in a PDB, you can drop the PDB. There is only one PDB that cannot be

dropped: It is the PDB seed.

• You cannot drop an application root as long as there are still application PDBs associated with it.

First drop the application seed and then the application PDBs.

• When the relocation of a PDB is finished, opening the new PDB automatically drops the source

PDB.

• Dropping the source PDB of a refreshable PDB does not drop the refreshable PDB. Queries on the

source data are no longer possible.

• Dropping the proxied PDB of a proxy PDB does not drop the proxy PDB. Queries on the proxied

PDB are no longer possible because the database link to the proxied PDB is no longer valid.

Dropping PDBs

CDB1

PDB$SEED

• The PDB seed cannot be dropped.

• An application seed can be dropped.

• An application root cannot be dropped as long as an
application PDB belongs to it.

• The source PDB of a relocated PDB is automatically
dropped when the relocated PDB is opened in RW mode.

• The source PDB of a refreshable PDB can be dropped.

• A proxied PDB of a proxy PDB can be dropped.

CDB root

Application root PDB_APP1

Application
PDB pdb3

Source PDB

Source PDB

Proxied PDB

CDB2

Refreshable PDB

Relocated PDB

Proxy PDB
SELECT ➔ ORA-12514

SELECT ➔ ORA-00942

OPEN ➔ Source PDBS dropped

Application root
clone 1

Application
seed

Application root
clone 2

Application
PDB pdb2

The DROP operation
updates controlfiles:

1. Removes PDB data files

2. Retains data files
(default)

Oracle Database 23c: Administration Workshop 13 - 9

Evaluate the impact of parameter value changes

Configure host name and port number per PDB

Drop PDBs

Change the different modes and settings of PDBs

Summary

Oracle Database 23c: Administration Workshop 13 - 10

Database Storage Overview

Objectives

Describe the purpose of each of the default tablespaces

Describe logical and physical storage structures in an Oracle database

List the advantages of deferred segment creation

Describe the storage of data in blocks

Oracle Database 23c: Administration Workshop 14 - 2

Database Storage Architecture

Online redo log files

Password file

Initialization parameter file Archived redo log
files

Control files Data files

Log and trace files

Backup files

The files that comprise an Oracle database are as follows:

• Control files: Each database has one unique control file that contains data about the database

itself (that is, physical database structure information). Multiple copies may be maintained to

protect against total loss. It can also contain metadata related to backups. The control file is critical

to the database. Without the control file, the database cannot be opened.

• Data files: They contain the user or application data of the database, as well as metadata and the

data dictionary.

• Online redo log files: They allow for instance recovery of the database. If the database server

crashes and does not lose any data files, the instance can recover the database with the

information in these files.

The following additional files are used during the operation of the database:

• Initialization parameter file: Used to define how the instance is configured when it starts up

• Password file: Allows users using the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, SYSKM, and

SYSASM roles to connect remotely to the instance and perform administrative tasks

• Backup files: Used for database recovery. You typically restore a backup file when a media failure

or user error has damaged or deleted the original file.

• Archived redo log files: Contain an ongoing history of the data changes (redo) that are generated

by the instance. Using these files and a backup of the database, you can recover a lost data file.

Archive logs enable the recovery of restored data files.

Oracle Database 23c: Administration Workshop 14 - 3

• Trace files: Each server and background process can write to an associated trace file. When an

internal error is detected by a process, the process dumps information about the error to its trace

file. Some of the information written to a trace file is intended for the database administrator,

whereas other information is for Oracle Support Services.

• Alert log file: These are special trace entries. The alert log of a database is a chronological log of

messages and errors. Oracle recommends that you review the alert log periodically.

• DDL log file: Contains DDL statements issued by the database server only when the

ENABLE_DDL_LOGGING initialization parameter is set to TRUE

Oracle Database 23c: Administration Workshop 14 - 4

Logical and Physical Database Structures

Database

Logical Physical

Tablespace

Segment

Extent

Oracle Data
Block

Storage System

Data file

The database has logical structures and physical structures.

Databases, Tablespaces, and Data Files

The relationship among databases, tablespaces, and data files is illustrated in the slide. Each database is

logically divided into two or more tablespaces. One or more data files are explicitly created for each

tablespace to physically store the data of all segments in a tablespace. If it is a TEMPORARY tablespace, it

has a temporary file instead of a data file. A tablespace’s data file can be physically stored on any

supported storage technology.

Tablespaces

A database is divided into logical storage units called tablespaces, which group related logical structures

or data files together. For example, tablespaces commonly group all of an application’s segments to

simplify some administrative operations.

Data Blocks

At the finest level of granularity, an Oracle database’s data is stored in data blocks. One data block

corresponds to a specific number of bytes of physical space on the disk. A data block size is specified for

each tablespace when it is created. A database uses and allocates free database space in Oracle data

blocks.

Extents

The next level of logical database space is an extent. An extent is a specific number of contiguous Oracle

data blocks (obtained in a single allocation) that are used to store a specific type of information. Oracle

data blocks in an extent are logically contiguous but can be physically spread out on disk because of RAID

striping and file system implementations.

Oracle Database 23c: Administration Workshop 14 - 5

Segments

The level of logical database storage above an extent is called a segment. A segment is a set of extents

allocated for a certain logical structure. For example:

• Data segments: Each nonclustered, non-index-organized table has a data segment, except

external tables, global temporary tables, and partitioned tables. All the table’s data is stored in the

extents of its data segment. For a partitioned table, each partition has a data segment. Each

cluster has a data segment. The data of every table in the cluster is stored in the cluster’s data

segment. When deferred segment creation is enabled, segments are not created until the first row

is inserted.

• Index segments: Each index has an index segment that stores all its data. For a partitioned index,

each partition has an index segment.

• Undo segments: One UNDO tablespace is created for each database instance. This tablespace

contains numerous undo segments to temporarily store undo information. The information in an

undo segment is used to generate read-consistent database information and, during database

recovery, roll back uncommitted transactions for users.

• Temporary segments: Temporary segments are created by the Oracle database when a SQL

statement needs a temporary work area to complete execution. When the statement finishes

execution, the temporary segment’s extents are returned to the database for future use. Specify

either a default temporary tablespace for every user or a default temporary tablespace that is used

databasewide.

Note: There are other types of segments not listed here. There are also schema objects such as views,

packages, and triggers that are not considered segments even though they are database objects. A

segment owns its respective disk space allocation. The other objects exist as rows stored in a system

metadata segment.

The Oracle Database server dynamically allocates space. When the existing extents of a segment are full,

additional extents are added. Because extents are allocated as needed, the extents of a segment may or

may not be contiguous on the disk, and they can come from different data files belonging to the same

tablespace.

Oracle Database 23c: Administration Workshop 14 - 6

Segments, Extents, and Blocks

• Segments exist in a tablespace.

• Segments are collections of extents.

• Extents are collections of data/undo blocks.

• Data/undo blocks are mapped to disk blocks.

Segment Extents Data/undo
blocks

Disk blocks
(File System

Storage)

A subset of database objects, such as tables and indexes, are stored as segments in tablespaces. Each

segment contains one or more extents. An extent consists of contiguous data blocks, which means that

each extent can exist only in one data file. Data blocks are the smallest unit of I/O in the database.

When the database requests a set of data blocks from the operating system (OS), the OS maps this to an

actual file system or disk block on the storage device. Because of this, you do not need to know the

physical address of any of the data in your database. This also means that a data file can be striped or

mirrored on several disks.

The size of the data block can be set at the time of database creation. The default size of 8 KB is adequate

for most databases. If your database supports a data warehouse application that has large tables and

indexes, a larger block size may be beneficial.

If your database supports a transactional application in which reads and writes are random, specifying a

smaller block size may be beneficial. The maximum block size depends on your OS. The minimum Oracle

block size is 2 KB; it should rarely (if ever) be used.

You can have tablespaces with a nonstandard block size. For details, see Oracle Database Administrator’s

Guide.

Oracle Database 23c: Administration Workshop 14 - 7

Tablespaces and Data Files

8 KB 8 KB

8 KB 8 KB

8 KB 8 KB

8 KB 8 KB

8 KB 8 KB

8 KB 8 KB

8 KB 8 KB

8 KB 8 KB

Tablespace 1

Data file 1 Data file 2

Extent

64 KB
Extent

64 KB

Segment

128 KB

Tablespace 2 (Bigfile)

Data file 3

Only 1 data file
allowed

<= 128 TB

A database is divided into tablespaces, which are logical storage units that can be used to group related

logical structures. One or more data files are explicitly created for each tablespace to physically store the

data of all logical structures in a tablespace.

The graphic in the slide illustrates tablespace 1, composed of two data files. A segment of 128 KB size,

composed of two extents, is spanning the two data files. The first extent of size 64 KB is in the first data

file and the second extent, also of size 64 KB, is in the second data file. Both extents are formed from

contiguous 8 KB Oracle blocks.

Note: You can also create bigfile tablespaces, which have only one file that is often very large. The file

may be of any size up to the maximum that the row ID architecture permits. The maximum size of the

single data file or temp file is 128 terabytes (TB) for a tablespace with 32 K blocks and 32 TB for a

tablespace with 8 K blocks.

Traditional smallfile tablespaces (which are the default) may contain multiple data files, but the files

cannot be as large. For more information about bigfile tablespaces, see Oracle Database Administrator’s

Guide.

Oracle Database 23c: Administration Workshop 14 - 8

Default Tablespaces in a Multitenant Container Database

Tablespace Description

SYSTEM The SYSTEM tablespace is used for core functionality. In the root container, it contains Oracle-

supplied metadata. In a PDB, it contains user metadata.

SYSAUX The SYSAUX tablespace is an auxiliary tablespace to the SYSTEM tablespace and helps reduce
the load on the SYSTEM tablespace. It exists in the root container and in each PDB.

TEMP The TEMP tablespace contains schema objects only for a session's duration. There is one

default temporary tablespace for the CDB root and one for each application root, application
PDB, and PDB.

UNDO The UNDO tablespace stores the data needed to roll back, or undo, changes to the database.

One active undo tablespace exists in the root container. It is recommended that you have a
local undo tablespace in each PDB.

USERS The USERS tablespace stores user objects and data. It is created by default in the root

container only.

SYSTEM: It stores the data dictionary (metadata that describes the objects in the database) and tables that

contain administrative information about the database. All this information is contained in the SYS

schema and can be accessed only by the SYS user or other administrative users with the required

privilege. In the root container, it stores Oracle-supplied metadata, whereas in a PDB, it stores user

metadata. Pointers from the PDBs to the Oracle-supplied objects allow the “system” objects to be

accessed without duplicating them in the PDBs.

SYSAUX: The SYSAUX tablespace is an auxiliary tablespace to the SYSTEM tablespace and helps reduce

the load on the SYSTEM tablespace. Some components and products that have used the SYSTEM

tablespace or their own tablespaces in earlier releases of Oracle Database now use the SYSAUX

tablespace. The SYSAUX tablespace exists in the root container and in each PDB.

TEMP: The TEMP tablespace contains schema objects only for a session's duration. Objects in temporary

tablespaces are stored in temp files. Your temporary tablespace is used when you execute a SQL

statement that requires the creation of temporary segments (such as a large sort or the creation of an

index). Just as each user is assigned a default tablespace for storing created data objects, each user is

assigned a temporary tablespace.

UNDO: The UNDO tablespace stores the data needed to roll back, or undo, changes to the database. In a

single-instance CDB, one active UNDO tablespace exists in the root container. It is optional, but

recommended, to have a local UNDO tablespace in a PDB.

USERS: The USERS tablespace stores user objects and data. If no default tablespace is specified when a

user is created, then the USERS tablespace is the default tablespace for all objects created by that user.

For the SYS and SYSTEM users, the default permanent tablespace is SYSTEM. The USERS tablespace is

created by default in the root container only.

Oracle Database 23c: Administration Workshop 14 - 9

SYSTEM and SYSAUX Tablespaces

• The SYSTEM and SYSAUX tablespaces are mandatory tablespaces that are created at

the time of database creation. They must be online.

• The SYSTEM tablespace is used for core functionality (for example, data dictionary

tables).

• The auxiliary SYSAUX tablespace is used for additional database components.

• The SYSTEM and SYSAUX tablespaces should not be used for application data.

Each Oracle database must contain a SYSTEM tablespace and a SYSAUX tablespace. They are

automatically created when the database is created. The system default is to create a smallfile tablespace.

You can also create bigfile tablespaces, which enable the Oracle database to manage ultralarge files.

A tablespace can be online (accessible) or offline (not accessible). The SYSTEM tablespace is always online

when the database is open. It stores tables that support the core functionality of the database, such as the

data dictionary tables.

The SYSAUX tablespace is an auxiliary tablespace to the SYSTEM tablespace. The SYSAUX tablespace

stores many database components and must be online for the correct functioning of all database

components. The SYSTEM and SYSAUX tablespaces are not recommended for storing an application’s

data. Additional tablespaces can be created for this purpose.

Note: The SYSAUX tablespace may be taken offline to perform tablespace recovery, whereas this is not

possible for the SYSTEM tablespace. Neither of them may be made read-only.

Oracle Database 23c: Administration Workshop 14 - 10

Types of Segments

• A segment is a set of extents allocated for a certain logical structure.

• The different types of segments include:

‒ Table and cluster

‒ Index

‒ Undo

‒ Temporary

• Segments are dynamically allocated by the Oracle Database server.

Table and cluster segments: Each nonclustered table has a data segment. All table data is stored in the

extents of the table segment. For a partitioned table, each partition has a data segment. Each cluster has

a data segment. The data of every table in the cluster is stored in the cluster’s data segment.

Index segment: Each index has an index segment that stores all its data. For a partitioned index, each

partition has an index segment.

Undo segment: Oracle Database maintains information to reverse changes made to the database. This

information consists of records of the actions of transactions, collectively known as undo. Undo is stored

in undo segments in an undo tablespace.

Temporary segment: A temporary segment is created by the Oracle Database server when a SQL

statement needs a temporary database area to complete execution. When the statement finishes

execution, the extents in the temporary segment are returned to the system for future use.

The Oracle Database server dynamically allocates space when the existing extents of a segment become

full. Because extents are allocated as needed, the extents of a segment may or may not be contiguous on

disk.

Oracle Database 23c: Administration Workshop 14 - 11

How Table Data Is Stored

Unless deferred segment creation is enabled, a logical "segment" is created when a table is created, as

illustrated in the slide. A tablespace contains a collection of segments.

Logically, a table contains rows of column values. A row is ultimately stored in a database block in the

form of a row piece (also illustrated in the slide). It is called a row piece because, under some

circumstances, the entire row may not be stored in one place. This happens when an inserted row is too

large to fit into a single block (chained row) or when an update causes an existing row to outgrow the

available free space of the current block (migrated row). Row pieces are also used when a table has more

than 255 columns. In this case, the pieces may be in the same block (intra-block chaining) or across

multiple blocks.

Oracle Database 23c: Administration Workshop 14 - 12

Database Block Content

Block header

Free space

Row data

Growth

A database block contains a block header, row data, and free space, as illustrated in the slide.

• A block header contains the segment type (such as table or index), data block address, table

directory, row directory, and transaction slots of approximately 23 bytes each, which are used

when modifications are made to rows in the block. The block header grows downward from the

top.

• Row data is the actual data for the rows in the block. Row data space grows upward from the

bottom.

• Free space is in the middle of the block, enabling the header and the row data space to grow when

necessary. Row data takes up free space as new rows are inserted or as columns of existing rows

are updated with larger values. Examples of events that cause header growth:

– Row directories that need more row entries

– More transaction slots required than initially configured

Initially, the free space in a block is contiguous. However, deletions and updates may fragment the free

space in the block. The free space in the block is coalesced by the Oracle server when necessary.

Oracle Database 23c: Administration Workshop 14 - 13

Understanding Deferred Segment Creation

• DEFERRED_SEGMENT_CREATION = TRUE is the default.

• Deferred segment is the default for tables, indexes, and partitions.

• Segment creation takes place as follows:

‒ Table creation > Data dictionary operation

‒ DML > Segment creation

CREATE TABLE INSERT INTO

• Saving disk space
• Improving installation time of big applications

When you create a nonpartitioned heap table, table segment creation is deferred to the first row insert.

This functionality is enabled by default with the DEFERRED_SEGMENT_CREATION initialization parameter

set to TRUE.

Advantages of this space allocation method:

• A significant amount of disk space can be saved for applications that create hundreds or

thousands of tables upon installation, many of which might never be populated.

• The application installation time is reduced.

When you insert the first row into the table, the segments are created for the base table, its LOB columns,

and its indexes. During segment creation, cursors on the table are invalidated. These operations have a

small additional impact on performance.

With this allocation method, it is essential that you do proper capacity planning so that the database has

enough disk space to handle segment creation when tables are populated.

Oracle Database 23c: Administration Workshop 14 - 14

Controlling Deferred Segment Creation

• With the DEFERRED_SEGMENT_CREATION parameter:

‒ Initialization parameter file

‒ ALTER SESSION command

‒ ALTER SYSTEM command

• With the SEGMENT CREATION clause:

‒ IMMEDIATE

‒ DEFERRED (default)

CREATE TABLE SEG_TAB3(C1 number, C2 number)

SEGMENT CREATION IMMEDIATE TABLESPACE SEG_TBS;

CREATE TABLE SEG_TAB4(C1 number, C2 number)

SEGMENT CREATION DEFERRED;

Segment creation can be controlled in two ways:

• With the DEFERRED_SEGMENT_CREATION initialization parameter set to TRUE or FALSE. This

parameter can be set in the initialization parameter file. You can also control it via the ALTER

SESSION or ALTER SYSTEM commands.

• With the SEGMENT CREATION clause of the CREATE TABLE command:

– SEGMENT CREATION DEFERRED: If specified, segment creation is deferred until the first row is

inserted into the table. This is the default behavior.

– SEGMENT CREATION IMMEDIATE: If specified, segments are materialized during table creation.

This clause takes precedence over the DEFERRED_SEGMENT_CREATION parameter.

It is possible to force the creation of segments for an existing table with the ALTER TABLE … MOVE

command.

It is not possible to directly control the deferred segment creation for dependent objects such as indexes.

They inherit this characteristic from their parent object—in this case, the table.

Oracle Database 23c: Administration Workshop 14 - 15

The database server tracks space utilization while performing regular space management activities. This

information is aggregated by the MMON process. An alert is triggered when the threshold for a

tablespace has been reached or cleared.

Alerts should not be flagged on tablespaces that are in read-only mode, or tablespaces that were taken

offline, because there is not much to do for them.

In temporary tablespaces, the threshold value has to be defined as a limit on the used space in the

tablespace.

For undo tablespaces, an extent is reusable if it does not contain active or unexpired undo. For the

computation of threshold violation, the sum of active and unexpired extents is considered as used space.

For tablespaces with auto-extensible files, the thresholds are computed according to the maximum file

size you specified or the maximum OS file size.

The diagram in the slide shows that the MMON process aggregates space utilization information and

generates a critical alert when the tablespace is 97% full and a warning when it is 85% full. The alert is

cleared after the space usage problem is addressed.

Monitoring Tablespace Space Usage

• Read-only and offline tablespaces: Do not set up alerts.

• Temporary tablespace: Threshold corresponds to space currently used by sessions.

• Undo tablespace: Threshold corresponds to space used by active and unexpired

extents.

• Auto-extensible files: Threshold is based on the maximum file size.

MMON

85% Warning

97% Critical

Alert

Alert

Cleared

Cleared

Oracle Database 23c: Administration Workshop 14 - 16

Describe the purpose of each of the default tablespaces

Describe the storage of data in blocks

List the advantages of deferred segment creation

Describe logical and physical storage structures in an Oracle database

Summary

Oracle Database 23c: Administration Workshop 14 - 17

Creating and Managing Tablespaces

Objectives

View tablespace information

Move and rename online data files

Create, alter, and drop tablespaces

Implement Oracle Managed Files (OMF)

Oracle Database 23c: Administration Workshop 15 - 2

Creating Tablespaces

• A tablespace is an allocation of space in the database that can contain schema

objects.

• Create a tablespace with the CREATE TABLESPACE statement or use a graphical

tool.

• You can create three types of tablespaces:

‒ Permanent tablespace: Contains persistent schema objects. Objects in permanent

tablespaces are stored in data files.

‒ Undo tablespace: Is a type of permanent tablespace used by Oracle Database to

manage undo data in automatic undo management mode

‒ Temporary tablespace: Contains schema objects only for the duration of a

session. Objects in temporary tablespaces are stored in temp files.

Before you can create a tablespace, you must create a database to contain it, and the database must be

open. You must also have the CREATE TABLESPACE system privilege. To create the SYSAUX tablespace,

you must have the SYSDBA system privilege.

Oracle Database 23c: Administration Workshop 15 - 3

Creating a Tablespace: Clauses

• Include one or more of the following clauses to define various aspects of the

tablespace:

Clause Description

DATAFILE or TEMPFILE Used to specify the name, location, and initial size of the data file or temp file

ONLINE or OFFLINE Used to make the tablespace available (or not available) immediately after
creation

BLOCKSIZE Used to specify a nonstandard block size

EXTENT MANAGEMENT Used to specify how the extents of the tablespace will be managed and where
the metadata for allocated and unallocated extents is to be stored

LOGGING Used to specify the default logging attributes of objects in the tablespace

SEGMENT MANAGEMENT Used to specify how free space in the segments in the tablespace should be
tracked (bitmaps or free lists)

Specifying the File Name and Size

You must include the DATAFILE or TEMPFILE clause when you create a tablespace. Use this clause to

specify the name and location of the data file or temp file. A tablespace must have at least one data file or

temp file. You must also specify an initial file size.

You can include the AUTOEXTEND ON clause to automatically extend the file when it is full. In this case,

you'll need to specify an increment amount and a maximum file size, which can be unlimited. Remember,

the size of the file is limited by the physical media on which it resides.

You can include the BIGFILE or SMALLFILE clause to override the default tablespace type (permanent

or temporary) for the database. If you omit this clause, then Oracle Database uses the current default

tablespace type.

• A bigfile tablespace contains only one data file (or temp file), which can contain up to

approximately 4 billion blocks. Bigfile tablespaces are used with extremely large databases, in

which Automatic Storage Management (ASM) or other logical volume managers support the

striping or redundant array of independent disks (RAID) and dynamically extensible logical

volumes. For bigfile tablespaces, you can specify only one data file in the DATAFILE clause or one

temp file in the TEMPFILE clause.

• A smallfile tablespace is a traditional Oracle tablespace, which can contain 1022 data files or temp

files, each of which can contain up to approximately 4 million blocks.

Specifying Tablespace Availability

You can include the ONLINE or OFFLINE clause to make the tablespace available (or not available)

immediately after creation to users who have been granted access to the tablespace. ONLINE is the

default. The data dictionary view DBA_TABLESPACES indicates whether each tablespace is online or

offline. This clause cannot be used with temporary tablespaces.

Oracle Database 23c: Administration Workshop 15 - 4

Specifying the Block Size

You can include the BLOCKSIZE clause to specify a nonstandard block size. To specify this clause, the

DB_CACHE_SIZE and at least one DB_nK_CACHE_SIZE parameter must be set, and the integer you

specify in this clause must correspond with the setting of one DB_nK_CACHE_SIZE parameter setting.

You cannot specify nonstandard block sizes for a temporary tablespace or if you intend to assign this

tablespace as the temporary tablespace for any users. If you don't specify a block size, the database will

use the default 8 KB block size for the tablespace.

Specifying Extent Management

You can include the EXTENT MANAGEMENT clause to specify how the extents of the tablespace will be

managed.

• AUTOALLOCATE specifies that the tablespace is system managed. Users cannot specify an extent

size. You cannot specify AUTOALLOCATE for a temporary tablespace.

• UNIFORM value specifies that the tablespace is managed with uniform extents of SIZE bytes. The

default SIZE is 1MB. All extents of temporary tablespaces are of uniform size, so this keyword is

optional for a temporary tablespace. However, you must specify UNIFORM to specify SIZE. You

cannot specify UNIFORM for an undo tablespace.

If you don't specify AUTOALLOCATE or UNIFORM, then the default is UNIFORM for temporary tablespaces

and AUTOALLOCATE for all other types of tablespaces. If you do not specify the EXTENT_MANAGEMENT

clause, then Oracle Database interprets the MINIMUM EXTENT clause and the DEFAULT STORAGE clause to

determine extent management.

Also, with the EXTENT MANAGEMENT clause, you can specify where the metadata for allocated and

unallocated extents is to be stored, either in the data dictionary (DICTIONARY) or in the tablespace itself

(LOCAL). Tablespaces that record extent allocation in the dictionary are called dictionary-managed

tablespaces. Tablespaces that record extent allocation in the tablespace header are called locally-

managed tablespaces.

Specifying Default Logging Attributes

You can include the LOGGING clause to specify the default logging attributes of all tables, indexes,

materialized views, materialized view logs, and partitions within a tablespace. The logging attribute

controls whether certain DML operations are logged in the redo log file (LOGGING) or not (NOLOGGING).

The default is LOGGING. This clause is not valid for a temporary or undo tablespace.

If logging is not enabled, any direct loads using SQL*Loader and direct load INSERT operations are not

written to the redo log, and the objects are thus unrecoverable in the event of data loss. When an object is

created without logging enabled, you must back up those objects if you want them to be recoverable.

Choosing not to enable logging can have a significant impact on the ability to recover objects in the

future. Use with caution.

You can use the FORCE LOGGING clause to put the tablespace into FORCE LOGGING mode. Oracle

Database will log all changes to all objects in the tablespace except changes to temporary segments,

overriding any NOLOGGING setting for individual objects. The database must be open and in READ WRITE

mode.

Oracle Database 23c: Administration Workshop 15 - 5

Specifying Free Space Management

You can include the SEGMENT MANAGEMENT clause to specify whether Oracle Database should track the

used and free space in the segments in the tablespace using free lists or bitmaps (AUTO) or not (MANUAL).

• AUTO: The Oracle Database server will use bitmaps to manage the free space in segments. The

bitmap describes the status of each data block in a segment with respect to the amount of space

in the block that is available for inserting rows. As more or less space becomes available in a data

block, the new state is reflected in the bitmap. With bitmaps, the Oracle Database manages free

space more automatically. As a result, this form of space management is called Automatic

Segment Space Management (ASSM).

• MANUAL: You want to use free lists for managing free space in segments. Free lists are lists of data

blocks that have space available for inserting rows. This form of managing space in segments is

called manual segment space management because of the need to specify and tune the PCTUSED,

FREELISTS, and FREELIST GROUPS storage parameters for schema objects created in the

tablespace. This is supported for backward compatibility; it is recommended that you use ASSM.

The SEGMENT MANAGEMENT clause applies to permanent, locally managed tablespaces only and is not

valid for temporary tablespaces.

Oracle Database 23c: Administration Workshop 15 - 6

Creating Permanent Tablespaces in a CDB

• Tablespace creation during CDB creation:

‒ With DBCA: USERS tablespace created in the CDB root

‒ With CREATE DATABASE statement with USER_DATA TABLESPACE clause: Your defined

tablespace created in the CDB root

• Create a permanent tablespace in the CDB root:

• Create a permanent tablespace in a PDB:

SQL> CONNECT system@cdb1

SQL> CREATE TABLESPACE tbs_CDB_users

DATAFILE '/u1/app/oracle/oradata/cdb/cdb_users01.dbf' SIZE 100M;

SQL> CONNECT system@PDB1

SQL> CREATE TABLESPACE tbs_PDB1_users

DATAFILE '/u1/app/oracle/oradata/cdb/pdb1/users01.dbf‘ SIZE 100M;

In a CDB, one set of tablespaces belong to the CDB root, and each PDB has its own set of tablespaces.

In a multitenant architecture, the tablespace is created in the container where the CREATE TABLESPACE

command is executed.

Separating the data files into different directories by PDB can help determine which files belong to which

PDB, though it is not necessary.

You can use Oracle ASM storage to manage your disk storage.

The USER_DATA TABLESPACE clause in the CREATE DATABASE command allows you to specify a

default tablespace other than USERS when using DBCA to create a database. This tablespace will also be

used for XDB options.

Oracle Database 23c: Administration Workshop 15 - 7

Defining Default Permanent Tablespaces

• In the CDB

• In the PDB

Multitenant Container Database CDB1

CDB root

PDBHR

PDBdev

SYSTEM

SYSTEM

SYSTEM

TBS_CDB_USERS

PDBHR_USERS

SQL> CONNECT system@cdb1

SQL> ALTER DATABASE DEFAULT TABLESPACE tbs_CDB_users;

SQL> CONNECT pdb1_admin@pdbhr

SQL> ALTER PLUGGABLE DATABASE DEFAULT TABLESPACE pdbhr_users;

The default tablespace for a database is a database property. To change the default tablespace for a CDB

root container, you must connect to the CDB root container as a user with the proper privileges and issue

the ALTER DATABASE command. This operation does not change the default permanent tablespace of

PDBs.

To change the default tablespace for a PDB, you must connect to the PDB as a user with proper

permissions and issue the ALTER PLUGGABLE DATABASE command. When connected to the PDB, the

ALTER DATABASE and ALTER PLUGGABLE DATABASE commands perform the same modifications to

the PDB. The ALTER DATABASE command is allowed for backward compatibility.

Oracle Database 23c: Administration Workshop 15 - 8

Temporary Tablespaces

• Only one default temporary

tablespace or tablespace group is

allowed per CDB or PDB.

• Each PDB can have temporary

tablespaces or tablespace groups.

• Define the default temporary

tablespace in a PDB:

SQL> CONNECT pdb1_admin@pdbhr

SQL> ALTER DATABASE DEFAULT TEMPORARY TABLESPACE local_temp;

Multitenant Container Database CDB1

CDB root

PDBtest

PDBHR

TEMP

LOCAL_TEMP

TEMP_ROOT

TEMP2

A CDB can have only one default temporary tablespace or tablespace group; there can be other

temporary tablespaces to which users can be assigned.

PDBs must have their own temporary tablespace (or tablespace group) for use by users in the PDB. These

temporary tablespaces will be transported with the PDB when it is unplugged.

Creating a local user requires a default temporary tablespace in the PDB to be assigned.

Creating a common user requires that the default temporary tablespace exists in the container where it is

replicated.

The default temporary tablespace for the CDB is set at the CDB root level. There may be multiple

temporary tablespaces, but only one can be the default.

When you create a user, you can specify a temporary tablespace to be used by that user. If a temporary

tablespace is not specified, the default tablespace for the PDB is used.

The amount of space a PDB can use in the shared temporary tablespace can be limited :

ALTER PLUGGABLE DATABASE STORAGE (MAX_SHARED_TEMP_SIZE 500M);

In this example, if the value used by sessions that are connected to the PDB is greater than 500M, then

no additional storage in the shared temporary tablespace will be available for sessions connected to the

PDB until the amount of storage used by them becomes smaller than 500M.

Oracle Database 23c: Administration Workshop 15 - 9

Altering and Dropping Tablespaces

• When you create a tablespace, it is initially a

read/write tablespace.

• Use the ALTER TABLESPACE statement to

take a tablespace offline or online, add data

files or temp files to it, or make it a read-only

tablespace.

• A tablespace can be in one of three different

statuses or states:

‒ Read Write

‒ Read Only

‒ Offline with one of the following options:

– NORMAL

– TEMPORARY

– IMMEDIATE

• Add space to an existing tablespace by either

adding data files to the tablespace or changing

the size of an existing data file.

• Use the DROP TABLESPACE statement to drop a

tablespace and its contents from the database

if you no longer need its content.

Changing the Status

A tablespace can be in one of three different statuses or states. Any of the following three states may not

be available because their availability depends on the type of tablespace:

• Read Write: The tablespace is online and can be read from and written to.

• Read Only: Specify read-only to place the tablespace in transition read-only mode. In this state,

existing transactions can be completed (committed or rolled back), but no further data

manipulation language (DML) operations are allowed on the objects in the tablespace. The

tablespace is online while in the read-only state. You cannot make the SYSTEM or SYSAUX

tablespaces read-only.

Note: The undo and temporary tablespaces cannot be made read-only.

• Offline: You can take an online tablespace offline so that this portion of the database is

temporarily unavailable for general use. The rest of the database is open and available for users to

access data. When you take it offline, you can use the following options:

– Normal: A tablespace can be taken offline normally if no error conditions exist for any of the

data files of the tablespace. Oracle Database ensures that all data is written to disk by taking a

checkpoint for all data files of the tablespace as it takes them offline.

– Temporary: A tablespace can be taken offline temporarily even if there are error conditions

for one or more files of the tablespace. Oracle Database takes the data files (which are not

already offline) offline, performing checkpointing on them as it does so. If no files are offline,

but you use the Temporary clause, media recovery is not required to bring the tablespace back

online. However, if one or more files of the tablespace are offline because of write errors, and

you take the tablespace offline temporarily, the tablespace requires recovery before you can

bring it back online.

Oracle Database 23c: Administration Workshop 15 - 10

• Immediate: A tablespace can be taken offline immediately without Oracle Database taking a

checkpoint on any of the data files. When you specify Immediate, media recovery for the

tablespace is required before the tablespace can be brought online. You cannot take a tablespace

offline immediately if the database is running in NOARCHIVELOG mode.

Note: System tablespaces may not be taken offline.

Changing the Size

You can add space to an existing tablespace by either adding data files to the tablespace or changing the

size of an existing data file. You cannot add additional data files to bigfile tablespaces. You can make a

tablespace either larger or smaller. However, you cannot make a data file smaller than the used space in

the file. If you try to do so, you'll get an error.

Dropping Tablespaces

You can drop a tablespace and its contents (the segments contained in the tablespace) from the database

if the tablespace and its contents are no longer required. You must have the DROP TABLESPACE system

privilege to drop a tablespace.

When you drop a tablespace, the file pointers in the control file of the associated database are removed. If

you are using Oracle Managed Files (OMF), the underlying operating system files are also removed.

Otherwise, without OMF, you can optionally direct the Oracle server to delete the operating system files

(data files) that constitute the dropped tablespace. If you do not direct the Oracle server to delete the data

files at the same time that it deletes the tablespace, you must later use the appropriate commands of your

operating system if you want them to be deleted.

You cannot drop a tablespace that contains segments with uncommitted updates from active

transactions. For example, if a table in the tablespace is currently being used, or if the tablespace contains

undo data that is needed to roll back uncommitted transactions, you cannot drop the tablespace. It is best

to take the tablespace offline before dropping it.

Oracle Database 23c: Administration Workshop 15 - 11

Viewing Tablespace Information

• Tablespace and data file information can be obtained by querying the following views:

‒ Tablespace information:

– CDB_TABLESPACES and DBA_TABLESPACES

– V$TABLESPACE

‒ Data file information:

– CDB_DATA_FILES and DBA_DATA_FILES

– V$DATAFILE

‒ Temp file information:

– CDB_TEMP_FILES and DBA_TEMP_FILES

– V$TEMPFILE

‒ Tables in a tablespace:

– ALL_TABLES

V$TABLESPACE, V$DATAFILE, and V$TEMPFILE display information from the control file.

Oracle Database 23c: Administration Workshop 15 - 12

Implementing Oracle Managed Files (OMF)

• Specify file operations in terms of database objects rather than file names.

• Example:

Parameter Description

DB_CREATE_FILE_DEST Defines the location of the default file system directory for
data files and temporary files

DB_CREATE_ONLINE_LOG_DEST_n Defines the location for redo log files and control file
creation

DB_RECOVERY_FILE_DEST Gives the default location for the fast recovery area

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST='/u01/app/oracle/oradata';

SQL> CREATE TABLESPACE tbs_1;

Oracle Managed Files (OMF) eliminates the need for you to directly manage the operating system files in

an Oracle database. You specify operations in terms of database objects rather than file names. The

database internally uses standard file system interfaces to create and delete files as needed for the

following database structures:

• Tablespaces

• Redo log files

• Control files

• Archived logs

• Block change tracking files

• Flashback logs

• RMAN backups

A database can have a mixture of Oracle-managed and Oracle-unmanaged files. The file system directory

specified by either of these parameters must already exist; the database does not create it. The directory

must also have permissions for the database to create the files in it.

The table in the slide lists three initialization parameters that are used with OMF. The example in the slide

shows that after the DB_CREATE_FILE_DEST initialization parameter is set, you can omit the DATAFILE

clause from the CREATE TABLESPACE statement. The data file is created in the location specified by

DB_CREATE_FILE_DEST.

Oracle Database 23c: Administration Workshop 15 - 13

Naming Formats

Oracle-managed files have a specific naming format. For example, on Linux- and UNIX-based systems,

the following format is used:

<destination_prefix>/o1_mf_%t_%u_.dbf

Do not rename an Oracle-managed file. The database identifies an Oracle-managed file based on its

name. If you rename the file, the database is no longer able to recognize it as an Oracle-managed file and

will not manage the file accordingly.

File Size

By default, Oracle-managed data files, including those for the SYSTEM and SYSAUX tablespaces, are 100

MB and auto-extensible.

Note: By default, Automatic Storage Management (ASM) uses OMF files, but if you specify an alias name

for an ASM data file at tablespace creation time or when adding an ASM data file to an existing

tablespace, then that file will not be OMF.

Oracle Database 23c: Administration Workshop 15 - 14

Enlarging the Database

• You can enlarge the database in

the following ways:

‒ Create a new tablespace.

‒ Add a data file to an existing

smallfile tablespace.

‒ Increase the size of a data file.

‒ Provide for the dynamic

growth of a data file.

SYSTEM

tablespace
INVENTORY

tablespace

Database

These activities can be performed with Enterprise Manager or with SQL statements. The size of the

database can be described as the sum of all of its tablespaces.

Oracle Database 23c: Administration Workshop 15 - 15

Moving or Renaming Online Data Files

You can rename and move an online data file from one kind of storage system to another while the

database is open and accessing the file. The first example in the diagram illustrates moving the HR

tablespace (three data files) from file system storage to ASM storage (diskgroup A). The second example

illustrates moving the APP tablespace from ASM storage (diskgroup B) to file system storage (three data

files).

Queries and DML and DDL operations can be performed while the data file is being moved. For example:

• SELECT statements against tables and partitions

• Creation of tables and indexes

• Rebuilding of indexes

Other notes:

• If objects are compressed while the data file is moved, the compression remains the same.

• You do not have to shut down the database or take the data file offline while you move a data file
to another location, disk, or storage system.

• You can omit the TO clause only when an Oracle-managed file is used. In this case, the
DB_CREATE_FILE_DEST initialization parameter should be set to indicate the new location.

• If the REUSE option is specified, the existing file is overwritten.

• If the KEEP clause is specified, the old file will be kept after the move operation. The KEEP clause is

not allowed if the source file is an Oracle-managed file.

• Use the V$SESSION_LONGOPS view to display ongoing online move operations. Each ongoing

operation has one row. The state transition of a successful online move operation is usually
NORMAL to COPYING to SUCCESS and finally to NORMAL.

Oracle Database 23c: Administration Workshop 15 - 16

You do not have to shut down the database or take the data file offline while you move a data file to

another location, disk, or storage system.

The TO clause can be omitted only when an Oracle-managed file is used. In this case, the

DB_CREATE_FILE_DEST parameter should be set to indicate the new location.

If the REUSE option is specified, the existing file is overwritten.

If the KEEP clause is specified, the old file will be kept after the move operation. The KEEP clause is not

allowed if the source file is an Oracle-managed file.

Use the V$SESSION_LONGOPS view to display ongoing online move operations. Each ongoing operation

has one row. The state transition of a successful online move operation is usually NORMAL to COPYING to

SUCCESS and finally to NORMAL.

Oracle Database 23c: Administration Workshop 15 - 17

Examples: Moving and Renaming Online Data Files

• Relocating an online data file:

• Copying a data file from a file system to Automatic Storage Management (ASM):

• Renaming an online data file:

SQL> ALTER DATABASE MOVE DATAFILE '/disk1/myexample01.dbf'

2 TO '/disk2/myexample01.dbf';

SQL> ALTER DATABASE MOVE DATAFILE '/disk1/myexample01.dbf'

2 TO '+DiskGroup2' KEEP;

SQL> ALTER DATABASE MOVE DATAFILE '/disk1/myexample01.dbf‘

2 TO '/disk1/myexample02.dbf';

Oracle Database 23c: Administration Workshop 15 - 18

Summary

View tablespace information

Move and rename online data files

Create, alter, and drop tablespaces

Implement Oracle Managed Files (OMF)

Improving Space Usage

Objectives

Create private temporary tables

Reclaim wasted space from tables and indexes by using the segment
shrink functionality

Manage resumable space allocation

Describe and use Oracle Database features that save space

Save space by using compression

Oracle Database 23c: Administration Workshop 16 - 2

Space Management Features

• Space is automatically managed by the Oracle Database server. It generates alerts

about potential problems and recommends possible solutions.

• Space management features include:

‒ Oracle Managed Files (OMF)

‒ Free-space management with bitmaps (“locally managed”) and automatic data file

extension

‒ Proactive space management (default thresholds and server-generated alerts)

‒ Space reclamation (shrinking segments, online table redefinition)

‒ Capacity planning (growth reports)

With Oracle Managed Files (OMF), you can specify operations in terms of database objects rather than file

names. The Oracle Database server can manage free space within a tablespace with bitmaps. This is

known as a “locally managed” tablespace. In addition, free space within segments located in locally

managed tablespaces can be managed using bitmaps. This is known as Automatic Segment Space

Management. The bitmapped implementation eliminates most space-related tuning of tables, while

providing improved performance during peak loads. Additionally, the Oracle Database server provides

automatic extension of data files, so the files can grow automatically based on the amount of data in the

files.

When you create a database, proactive space monitoring is enabled by default (this causes no

performance impact). The Oracle Database server monitors space utilization during normal space

allocation and deallocation operations and alerts you if the free space availability falls below the

predefined thresholds (which you can override). Advisors and wizards assist you with space reclamation.

For capacity planning, the Oracle Database server provides space estimates based on table structure and

the number of rows and a growth trend report based on historical space utilization stored in the

Automatic Workload Repository (AWR).

Oracle Database 23c: Administration Workshop 16 - 3

Block Space Management

PCTFREE = 10

Deletes

Full block

Inserts,
updates

Deletes

FS2

FS3

FS1

FS2

FS3

FS4

FS1

Full block

Space management involves the management of free space at the block level. With Automatic Segment

Space Management, each block is divided into four sections, named FS1 (between 0 and 25% of free

space), FS2 (25% to 50% free), FS3 (50% to 75% free), and FS4 (75% to 100% free).

Depending on the level of free space in the block, its status is automatically updated. That way,

depending on the length of an inserted row, you can tell whether a particular block can be used to satisfy

an insert operation. Note that a “full” status means that a block is no longer available for inserts.

In the example in the slide, the block on the left is an FS3 block because it has between 50% and 75% free

space. After some insert and update statements, PCTFREE is reached (the dashed line), and it is no longer

possible to insert new rows in that block. The block is now considered as a “full” or FS1 block. The block is

considered for insertion again as soon as its free space level drops below the next section. In the

preceding case, it gets FS2 status as soon as the free space is more than 25%.

Note: Large object (LOB) data types (BLOB, CLOB, NCLOB, and BFILE) do not use the PCTFREE storage

parameter. Uncompressed and OLTP-compressed blocks have a default PCTFREE value of 10; basic

compressed blocks have a default PCTFREE value of 0.

Oracle Database 23c: Administration Workshop 16 - 4

In two circumstances, the data for a row in a table may be too large to fit into a single data block. In the

first case, the row is too large to fit into one data block when it is first inserted. In this case, the Oracle

Database server stores the data for the row in a chain of data blocks (one or more) reserved for that

segment. Row chaining most often occurs with large rows, such as rows that contain a column of data

type LONG or LONG RAW. Row chaining in these cases is unavoidable.

However, in the second case, a row that originally fit into one data block is updated so that the overall row

length increases, and the block’s free space is already completely filled. In this case, the Oracle Database

server migrates the data for the entire row to a new data block, assuming that the entire row can fit in a

new block. The database preserves the original row piece of a migrated row to point to the new block

containing the migrated row. The ROWID of a migrated row does not change.

When a row is chained or migrated, input/output (I/O) performance associated with this row decreases

because the Oracle Database server must scan more than one data block to retrieve the information for

the row.

Segment Advisor finds the segments containing migrated rows that result from an UPDATE.

The Oracle Database server automatically and transparently coalesces the free space of a data block

when:

• An INSERT or UPDATE statement attempts to use a block with sufficient free space for a new row

piece

• The free space is fragmented so that the row piece cannot be inserted in a contiguous section of

the block

After coalescing, the amount of free space is identical to the amount before the operation, but the space

is now contiguous.

Row Chaining and Migration

• On update: Row length increases, exceeding the

available free space in the block.

• Data needs to be stored in a new block.

• Original physical identifier of row (ROWID) is preserved.

• The Oracle Database server needs to read two blocks to

retrieve data.

• Segment Advisor finds segments containing the

migrated rows.

• There is automatic coalescing of fragmented free space

inside the block.

Old

Original block
with pointer
to migrated

row

New data

Oracle Database 23c: Administration Workshop 16 - 5

Free space can be managed automatically inside database segments. The in-segment free or used space

is tracked with bitmaps. To take advantage of this feature, specify Automatic Segment Space

Management when you create a locally managed tablespace. Your specification then applies to all

segments subsequently created in this tablespace.

Automatic space management segments have a set of bitmap blocks (BMBs) describing the space

utilization of the data blocks in that segment. BMBs are organized in a tree hierarchy. The root level of the

hierarchy, which contains references to all intermediate BMBs, is stored in the segment header. The

leaves of this hierarchy represent the space information for a set of contiguous data blocks that belong to

the segment. The maximum number of levels inside this hierarchy is three.

Benefits of using automatic space management include:

• Better space utilization, especially for objects with highly varying row sizes

• Better runtime adjustment to variations in concurrent access

• Better multi-instance behavior in terms of performance or space utilization

Free Space Management Within Segments

• Tracked by bitmaps in segments

• Benefits:

‒ More flexible space utilization

‒ Runtime adjustment

‒ Multiple process search of bitmap blocks

(BMBs)

Extent

BMB BMB

Data
block

… … … …

…

…

…

…

…

…

…BMB

BMBBMB

BMB

BMB

Segment

Oracle Database 23c: Administration Workshop 16 - 6

Allocating Extents

• Searching the data file’s bitmap for the required number of adjacent free blocks

• Sizing extents with storage clauses:

‒ UNIFORM

‒ AUTOALLOCATE

• Viewing the extent map

• Obtaining deallocation advice

With locally managed tablespaces, the Oracle Database server looks for free space to allocate to a new

extent by first determining a candidate data file in the tablespace and then searching the data file’s

bitmap for the required number of adjacent free blocks. If that data file does not have enough adjacent

free space, then the Oracle Database server looks in another data file.

Two clauses affect the sizing of extents:

• With the UNIFORM clause, the database creates all extents of a uniform size that you specified (or

a default size) for any objects created in the tablespace.

• With the AUTOALLOCATE clause, the database determines the extent-sizing policy for the

tablespace.

The Oracle Database server provides a Segment Advisor that helps you determine whether an object has

space available for reclamation on the basis of the level of space fragmentation within the object.

Oracle Database 23c: Administration Workshop 16 - 7

Using Unusable Indexes

• Consider using unusable indexes to improve the performance of bulk loads.

• Unusable indexes are ignored by the optimizer.

• When an unusable index is created, no segment is created:

• When an existing index is altered to unusable, the segment is dropped:

• An unusable index can be rebuilt to make it valid again:

CREATE INDEX test_i1 ON seg_test(c) UNUSABLE

ALTER INDEX test_i UNUSABLE

ALTER INDEX test_i REBUILD

You can use an unusable index to improve the performance of bulk load.

When a new index is created with the UNUSABLE attribute, the index is defined but no segment is created.

DML operations do not cause any updates to the index, and the optimizer does not use it.

You can also set an existing index to unusable. When you do this, the index segment is dropped. You can

re-create the index by using the REBUILD option on the ALTER INDEX statement.

Oracle Database 23c: Administration Workshop 16 - 8

Using Temporary Tables

• Temporary tables contain data for the duration of a transaction or session.

• Types of temporary tables:

‒ Global: Table definition is visible to all sessions; content is specific to a session.

‒ Private: Table definition is visible only to the creating session.

• Segment for a temporary table is allocated with the first INSERT or CREATE TABLE

AS SELECT statement.

• Table definition persists after a ROLLBACK.

• Transaction-specific temporary table can only be used by one transaction at a time.

Consider using temporary tables in applications where a result set is to be buffered (temporarily

persisted). You can create either a global temporary table or a private temporary table.

A global temporary table definition is visible to all sessions. However, the content in the table is specific to

a session. Global temporary table definitions are stored on disk.

A private temporary table definition is visible only to the session that created it. The table definition is

stored only in memory.

Oracle Database 23c: Administration Workshop 16 - 9

Creating Global Temporary Tables

• Create a global temporary table by using the CREATE GLOBAL TEMPORARY TABLE

statement.

• Specify whether the global temporary table applies to a transaction or session by

using the ON COMMIT clause:

‒ Transaction-specific (default): ON COMMIT DELETE ROWS

‒ Session-specific: ON COMMIT PRESERVE ROWS

• Example:

SQL> CREATE GLOBAL TEMPORARY TABLE trans_buff_area(date1 DATE,…)

> ON COMMIT DELETE ROWS;

You can use the CREATE GLOBAL TEMPORARY TABLE statement to create a global temporary table. The

ON COMMIT clause indicates if the data in the table is transaction-specific (the default) or session-specific.

If the global temporary table is transaction-specific, the table is truncated after each commit. With a

session-specific global temporary table, the table is truncated when the session is terminated.

Oracle Database 23c: Administration Workshop 16 - 10

Private temporary tables are local to a specific session. In contrast with global temporary tables, the

definition and contents are local to the creating session only and are not visible to other sessions.

There are two types of durations for private temporary tables:

• Transaction: The private temporary table is automatically dropped when the transaction in which

it was created ends with either a ROLLBACK or COMMIT. This is the default behavior if no ON

COMMIT clause is defined at private temporary table creation.

• Session: The private temporary table is automatically dropped when the session that created it

ends. This is the behavior if the ON COMMIT PRESERVE DEFINITION clause is defined at the

private temporary table creation.

A private temporary table must be named with a prefix 'ORA$PTT_'. The prefix is defined by default by

the PRIVATE_TEMP_TABLE_PREFIX initialization parameter, modifiable at the instance level only.

Creating a private temporary table does not commit the current transaction. Because it is local to the

current session, a concurrent session may also create a private temporary table with the same name but

having a different shape.

Private temporary tables must be created in the user schema. Creating a private temporary table in

another schema is not allowed.

Creating Private Temporary Tables

• Create a private temporary table by using the CREATE PRIVATE TEMPORARY TABLE statement.

• The table name must start with ORA$PTT_ :

• The CREATE PRIVATE TEMPORARY TABLE statement does not commit a transaction.

• Two concurrent sessions may have a private temporary table with the same name but different

shape.

• Private temporary table definition and contents are automatically dropped at the end of a session

or transaction.

SQL> CREATE PRIVATE TEMPORARY TABLE ORA$PTT_mine (c1 DATE, … c3 NUMBER(10,2));

SQL> DROP TABLE ORA$PTT_mine;

SQL> CREATE PRIVATE TEMPORARY TABLE ORA$PTT_mine (c1 DATE …)

ON COMMIT PRESERVE DEFINITION;

PRIVATE_TEMP_TABLE_PREFIX = ORA$PTT_

Oracle Database 23c: Administration Workshop 16 - 11

Table Compression: Overview

• Reducing storage costs by compressing all data:

‒ Basic compression for direct-path insert operations: 10x

‒ Advanced row compression for all DML operations: 2–4x

Compression
Method

Compression
Ratio

CPU Overhead CREATE and ALTER TABLE

Syntax
Typical
Applications

Basic table
compression

High Minimal COMPRESS or

ROW STORE COMPRESS BASIC

DSS

Advanced row
compression

High Minimal ROW STORE COMPRESS ADVANCED OLTP, DSS

Oracle Database supports three methods of table compression:

• Basic table compression

• Advanced row compression

• Hybrid columnar compression

Oracle Corporation recommends compressing all data to reduce storage costs. The Oracle Database

server can use table compression to eliminate duplicate values in a data block. For tables with highly

redundant data, compression saves disk space and reduces memory use in the database buffer cache.

Table compression is transparent to database applications.

The TABLE_COMPRESSION clause is valid only for heap-organized tables. The COMPRESS keyword

enables table compression. The NOCOMPRESS keyword disables table compression. NOCOMPRESS is the

default.

With basic compression, the Oracle Database server compresses data at the time of performing bulk load

by using operations such as direct loads or CREATE TABLE AS SELECT.

With ROW STORE COMPRESS ADVANCED, the Oracle Database server compresses data during all DML

operations on the table.

Hybrid Columnar Compression is optimized for data warehousing and decision support applications on

Oracle Exadata storage. Other Oracle storage systems support Hybrid Columnar Compression and deliver

the same space savings as on Oracle Exadata storage, but do not deliver the same level of query

performance.

Oracle Database 23c: Administration Workshop 16 - 12

Table Compression: Concepts

Inserts are
uncompressed.

PCTFREE reached

triggers compression.
Inserts are again
uncompressed.

PCTFREE reached

triggers compression.

Data block
U

n
co

m
p

re
ss

e
d

d
a

ta

Header

Free
space

PCTFREE
= 0

Compressed
data

The slide shows you a data block evolution when that block is part of a compressed table. You should

read it from left to right. At the start, the block is empty and available for inserts. When you start inserting

into this block, data is stored in an uncompressed format (as for uncompressed tables). However, as soon

as the block is filled based on the PCTFREE setting of the block, the data is automatically compressed,

potentially reducing the space it originally occupied. This allows for new uncompressed inserts to take

place in the same block, until it is once again filled based on the PCTFREE setting. At that point

compression is triggered again to reduce the amount of space used in the block. Compression eliminates

holes created due to deletions and maximizes contiguous free space in blocks.

Tables with COMPRESS or ROW STORE COMPRESS BASIC use a PCTFREE value of 0 to maximize

compression, unless you explicitly set a value for the PCTFREE clause.

Tables with ROW STORE COMPRESS ADVANCED or NOCOMPRESS use the PCTFREE default value of 10 to

maximize compression while still allowing for some future DML changes to the data, unless you override

this default explicitly.

Oracle Database 23c: Administration Workshop 16 - 13

Compression for Direct-Path Insert Operations

• Is enabled with CREATE TABLE … COMPRESS BASIC

• Is recommended for bulk loading data warehouses

• Maximizes contiguous free space in blocks

Enable basic table compression by using COMPRESS or ROW STORE COMPRESS BASIC. The Oracle

Database server attempts to compress data during the following direct-path insert operations when it is

productive to do so:

• Direct-path SQL*Loader

• CREATE TABLE AS SELECT statements

• Parallel INSERT statements

• INSERT statements with an APPEND hint

Oracle Database 23c: Administration Workshop 16 - 14

Advanced Row Compression for DML Operations

• Is enabled with CREATE TABLE … ROW STORE COMPRESS ADVANCED

• Is recommended for active OLTP environments

Y Y Y

G Y G

G Y Y G

Uncompressed
block

G Y

Y Y Y

G Y G

G Y Y G

OLTP compression with the symbol
table at the beginning of the block

Enable advanced row compression by using ROW STORE COMPRESS ADVANCED

The Oracle Database server compresses data during all DML operations on the table. This form of

compression is recommended for active OLTP environments.

With advanced row compression, duplicate values in the rows and columns in a data block are stored

once at the beginning of the block in a symbol table. Duplicate values are replaced with a short reference

to the symbol table, as shown in the diagram in the slide. Thus, information needed to re-create the

uncompressed data is stored in the block.

To illustrate the principle of advanced row compression, the diagram shows two rectangles. The first red

rectangle contains four small green squares labeled “G” and six yellow ones labeled “Y.” They represent

uncompressed blocks. At the beginning of the second red rectangle, there is only one green square

labeled “G” and one yellow “Y” square, representing the symbol table. The second red diagram shows 10

white squares in the same position as the green and yellow ones. They are white because they are now

only a reference, not consuming space for duplicate values.

Oracle Database 23c: Administration Workshop 16 - 15

Specifying Table Compression

• You can specify table compression for:

‒ An entire heap-organized table

‒ A partitioned table (each partition can have a different type or level of compression)

‒ The storage of a nested table

• You cannot:

‒ Specify basic and advanced row compression on tables with more than 255

columns

‒ Drop a column if a table is compressed for direct loads, but you can drop it if the

table is advance row compressed

Table compression has the following restrictions:

• ROW STORE COMPRESS ADVANCED and COMPRESS BASIC are not supported for tables with more

than 255 columns.

• You cannot drop a column from a table that is compressed for direct-load operations, although

you can set such a column as unused. All the operations of the ALTER TABLE ...

drop_column_clause are valid for tables that are compressed for OLTP.

Oracle Database 23c: Administration Workshop 16 - 16

Using the Compression Advisor

• Analyzes objects to give an estimate of space savings for different compression

methods

• Helps in deciding the correct compression level for an application

• Recommends various strategies for compression

‒ Picks the right compression algorithm for a particular data set

‒ Sorts on a particular column for increasing the compression ratio

‒ Presents tradeoffs between different compression algorithms

Compression Advisor analyzes database objects and determines the expected compression ratios that

can be achieved for each compression level. It helps you determine the proper compression levels for

your application and recommends various strategies for compression.

A compression advisor, provided by the DBMS_COMPRESSION package, helps you determine the

compression ratio that can be expected for a specified table. The advisor analyzes the objects in the

database, discovers the possible compression ratios that could be achieved, and recommends optimal

compression levels. In addition to the DBMS_COMPRESSION package, compression advisor can also be

used within the existing advisor framework (with the DBMS_ADVISOR package).

Oracle Database 23c: Administration Workshop 16 - 17

Tablespace thresholds are defined either as full or as available space in the tablespace. Critical and

warning thresholds are the two thresholds that apply to a tablespace. The DBMS_SERVER_ALERT package

contains procedures to set and get the threshold values. When the tablespace limits are reached, an

appropriate alert is raised. The threshold is expressed in terms of a percentage of the tablespace size or in

remaining bytes free. It is calculated in memory. You can have both a percentage and a byte-based

threshold defined for a tablespace. Either or both of them may generate an alert.

The ideal setting for the warning threshold trigger value results in an alert that is early enough to ensure

that there is enough time to resolve the problem before it becomes critical, but late enough so that you

are not bothered when space is not a problem.

The alert indicates that the problem can be resolved by doing one or more of the following:

• Adding more space to the tablespace by adding a file or resizing existing files or making an

existing file auto-extendable

• Freeing up space on disks that contain any auto-extendable files

• Shrinking sparse objects in the tablespace

The diagram in the slide shows that the DBA receives a critical alert when the tablespace is 97% full and a

warning when the tablespace is 85% full.

Resolving Space Usage Issues

• Resolve space usage issues by:

‒ Adding or resizing data files

‒ Setting AUTOEXTEND to ON

‒ Shrinking objects

‒ Reducing UNDO_RETENTION

• Check for long-running

queries in temporary tablespaces.

85% full or 100 MB left
warning

97% full or 5 MB left
critical

Resolve space
problem

Alert

Locally managed tablespace

DBA

Oracle Database 23c: Administration Workshop 16 - 18

Reclaiming Space by Shrinking Segments

• Shrink is an online and in-place operation.

• It is applicable only to segments residing in ASSM tablespaces.

• Candidate segment types:

‒ Heap-organized tables and index-organized tables

‒ Indexes

‒ Partitions and subpartitions

‒ Materialized views and materialized view logs

A shrink operation is an online and in-place operation because it does not need extra database space to

be executed.

You cannot execute a shrink operation on segments managed by free lists. Segments in automatic

segment space–managed tablespaces can be shrunk. However, the following objects stored in ASSM

tablespaces cannot be shrunk:

• Tables in clusters

• Tables with LONG columns

• Tables with on-commit materialized views

• Tables with ROWID-based materialized views

• IOT mapping tables

• Tables with function-based indexes

Because a shrink operation may cause ROWIDs to change in heap-organized segments, you must enable

row movement on the corresponding segment before executing a shrink operation on that segment. Row

movement by default is disabled at segment level.

Oracle Database 23c: Administration Workshop 16 - 19

The diagram in the slide describes the two phases of a table shrink operation. Compaction is performed

in the first phase. During this phase, rows are moved to the left part of the segment as much as possible.

Internally, rows are moved by packets to avoid locking issues. After the rows have been moved, the

second phase of the shrink operation is started. During this phase, the high-water mark (HWM) is

adjusted and the unused space is released.

The COMPACT clause is useful if you have long-running queries that might span the shrink operation and

attempt to read from blocks that have been reclaimed. When you specify the SHRINK SPACE COMPACT

clause, the progress of the shrink operation is saved in the bitmap blocks of the corresponding segment.

This means that the next time a shrink operation is executed on the same segment, the Oracle Database

server remembers what has already been done. You can then reissue the SHRINK SPACE clause without

the COMPACT clause during off-peak hours to complete the second phase.

Shrinking Segments

HWM

HWM

DML operations and queries can be issued during compaction.

DML operations are blocked when the HWM is adjusted.

ALTER TABLE employees SHRINK SPACE COMPACT;1

ALTER TABLE employees SHRINK SPACE;2

HWM

Oracle Database 23c: Administration Workshop 16 - 20

Shrinking a sparsely populated segment improves the performance of scan and DML operations on that

segment. This is because there are fewer blocks to look at after the segment has been shrunk. This is

especially true for:

• Full table scans (fewer and denser blocks)

• Better index access (fewer I/Os on range ROWID scans due to a more compact tree)

Also, by shrinking sparsely populated segments, you enhance the efficiency of space utilization inside

your database because more free space is made available for objects in need.

Index dependency is taken care of during the segment shrink operation. The indexes are in a usable state

after shrinking the corresponding table. Therefore, no further maintenance is needed.

The actual shrink operation is handled internally as an INSERT/DELETE operation. However, DML

triggers are not executed because the data itself is not changed.

As a result of a segment shrink operation, it is possible that the number of migrated rows is reduced.

However, you should not always depend on reducing the number of migrated rows after a segment has

been shrunk. This is because a segment shrink operation may not touch all the blocks in the segment.

Therefore, it is not guaranteed that all the migrated rows are handled.

Note: It is recommended to rebuild secondary indexes on an index-organized table (IOT) after a shrink

operation.

Results of a Shrink Operation

• Improved performance and space utilization

• Indexes maintained

• Triggers not executed

• Number of migrated rows may be reduced

• Rebuilding secondary indexes on IOTs recommended

Shrink

Triggers not executed

Table

Index
DBA

Oracle Database 23c: Administration Workshop 16 - 21

Managing Resumable Space Allocation

• A resumable statement:

‒ Enables you to suspend large operations instead of receiving an error

‒ Gives you a chance to fix the problem while the operation is suspended, rather than

starting over

‒ Is suspended for the following conditions:

– Out of space

– Maximum extents reached

– Space quota exceeded

‒ Can be suspended and resumed multiple times

The Oracle Database server provides a means for suspending, and later resuming, the execution of large

database operations in the event of space allocation failures. This enables you to take corrective action

instead of the Oracle Database server returning an error to the user. After the error condition is corrected,

the suspended operation automatically resumes. This feature is called “resumable space allocation.” The

statements that are affected are called “resumable statements.” A statement executes in resumable mode

only when the resumable statement feature has been enabled for the system or session.

Suspending a statement automatically results in suspending the transaction. Thus, all transactional

resources are held through the suspension and resuming of a SQL statement. When the error condition

disappears (for example, as a result of user intervention or perhaps sort space released by other queries),

the suspended statement automatically resumes execution. A resumable statement is suspended when

one of the following conditions occur:

• Out of space condition

• Maximum extents reached condition

• Space quota exceeded condition

A suspension timeout interval is associated with resumable statements. A resumable statement that is

suspended for the timeout interval (the default is 2 hours) reactivates itself and returns the exception to

the user. A resumable statement can be suspended and resumed multiple times.

Oracle Database 23c: Administration Workshop 16 - 22

Using Resumable Space Allocation

• Queries, DML operations, and certain DDL operations can be resumed if they

encounter an out-of-space error.

• A resumable statement can be issued through SQL, PL/SQL, SQL*Loader, and Data

Pump utilities, or Oracle Call Interface (OCI).

• A statement executes in resumable mode only if its session has been enabled by

one of the following actions:

‒ The RESUMABLE_TIMEOUT initialization parameter is set to a nonzero value.

‒ An ALTER SESSION ENABLE RESUMABLE statement is issued.

Resumable space allocation is possible only when statements are executed within a session that has

resumable mode enabled. There are two means of enabling and disabling resumable space allocation:

• Issue the ALTER SESSION ENABLE RESUMABLE command.

• Set the RESUMABLE_TIMEOUT initialization parameter to a nonzero value with an ALTER SESSION

or ALTER SYSTEM statement.

When enabling resumable mode for a session or the database, you can specify a timeout period, after

which a suspended statement errors out if no intervention has taken place. The RESUMABLE_TIMEOUT

initialization parameter indicates the number of seconds before a timeout occurs. You can also specify

the timeout period with the following command:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600

The value of TIMEOUT remains in effect until it is changed by another ALTER SESSION ENABLE

RESUMABLE statement, it is changed by another means, or the session ends. The default timeout interval

when using the ENABLE RESUMABLE TIMEOUT clause to enable resumable mode is 7,200 seconds or 2

hours.

You can also give a name to resumable statements. Example:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600 NAME 'multitab insert‘

The name of the statement is used to identify the resumable statement in the DBA_RESUMABLE and

USER_RESUMABLE views.

Oracle Database 23c: Administration Workshop 16 - 23

• To automatically configure resumable statement settings for individual sessions, you can create

and register a database-level LOGON trigger that alters a user’s session. The trigger issues

commands to enable resumable statements for the session, specifies a timeout period, and

associates a name with the resumable statements issued by the session.

• Because suspended statements can hold up some system resources, users must be granted the

RESUMABLE system privilege before they are allowed to enable resumable space allocation and

execute resumable statements.

Oracle Database 23c: Administration Workshop 16 - 24

When a resumable statement is suspended, the error is not raised to the client. In order for corrective

action to be taken, the Oracle Database server provides alternative methods for notifying users of the

error and providing information about the circumstances.

The diagram in the slide illustrates the following example:

1. An INSERT statement encounters an error saying the table is full.

2. The INSERT statement is suspended, and no error is passed to the client.

3. Optionally, an AFTER SUSPEND trigger is executed.

4. Optionally, the SQLERROR exception is activated to abort the statement.

If the statement is not aborted and free space is successfully added to the table, the INSERT statement

resumes execution.

Possible Actions During Suspension

When a resumable statement encounters a correctable error, the system internally generates the AFTER

SUSPEND system event. Users can register triggers for this event at both the database and schema level. If

a user registers a trigger to handle this system event, the trigger is executed after a SQL statement has

been suspended. SQL statements executed within an AFTER SUSPEND trigger are always nonresumable

and autonomous. Transactions started within the trigger use the SYSTEM rollback segment. These

conditions are imposed to overcome deadlocks and reduce the chance of the trigger experiencing the

same error condition as the statement.

Within the trigger code, you can use the USER_RESUMABLE or DBA_RESUMABLE views or the

DBMS_RESUMABLE.SPACE_ERROR_INFO function to get information about the resumable statements.

Resuming Suspended Statements

SQL statement

Full table

Suspended

Continue
SQL

operation

AFTER

SUSPEND

trigger
Abort

Optionally

Table
with
free

space

1

2

3

4

5

Oracle Database 23c: Administration Workshop 16 - 25

• When a resumable statement is suspended:

– The session invoking the statement is put into a wait state. A row is inserted into

V$SESSION_WAIT for the session with the EVENT column containing “statement suspended,

wait error to be cleared.”

– An operation-suspended alert is issued on the object that needs additional resources for the

suspended statement to complete.

• Ending a Suspended Statement

• When the error condition is resolved (for example, as a result of DBA intervention or perhaps sort

space released by other queries), the suspended statement automatically resumes execution and

the “resumable session suspended” alert is cleared.

• A suspended statement can be forced to activate the SERVERERROR exception by using the

DBMS_RESUMABLE.ABORT() procedure. This procedure can be called by a DBA or by the user

who issued the statement. If the suspension timeout interval associated with the resumable

statement is reached, the statement aborts automatically, and an error is returned to the user.

Oracle Database 23c: Administration Workshop 16 - 26

What operations are resumable?

• The following operations are resumable:

‒ Queries: SELECT statements that run out of temporary space (for sort areas)

‒ DML: INSERT, UPDATE, and DELETE statements

‒ The following DDL statements:

– CREATE TABLE ... AS SELECT

– CREATE INDEX

– ALTER INDEX ... REBUILD

– ALTER TABLE ... MOVE PARTITION

– ALTER TABLE ... SPLIT PARTITION

– ALTER INDEX ... REBUILD PARTITION

– ALTER INDEX ... SPLIT PARTITION

– CREATE MATERIALIZED VIEW

The following operations are resumable:

• Queries: SELECT statements that run out of temporary space (for sort areas) are candidates for

resumable execution. When using OCI, the OCIStmtExecute() and OCIStmtFetch() calls are

candidates.

• DML: INSERT, UPDATE, and DELETE statements are candidates. The interface used to execute

them does not matter; it can be OCI, SQLJ, PL/SQL, or another interface. Also, INSERT

INTO...SELECT from external tables can be resumable.

• DDL: The following statements are candidates for resumable execution:

– CREATE TABLE ... AS SELECT

– CREATE INDEX

– ALTER INDEX ... REBUILD

– ALTER TABLE ... MOVE PARTITION

– ALTER TABLE ... SPLIT PARTITION

– ALTER INDEX ... REBUILD PARTITION

– ALTER INDEX ... SPLIT PARTITION

– CREATE MATERIALIZED VIEW

Oracle Database 23c: Administration Workshop 16 - 27

Summary

Create private temporary tables

Save space by using compression

Reclaim wasted space from tables and indexes by using the segment
shrink functionality

Manage resumable space allocation

Describe and use Oracle Database features that save space

Oracle Database 23c: Administration Workshop 16 - 28

Managing Undo Data

Objectives

Monitor and administer undo data

Configure undo retention

Guarantee undo retention

Explain DML and undo data generation

Enable temporary undo

Describe the difference between undo data and redo data

Oracle Database 23c: Administration Workshop 17 - 2

Undo Data: Overview

• Undo data is:

‒ A record of the action of a transaction

‒ Captured for every transaction that changes data

‒ Retained at least until the transaction is ended

‒ Used to support:

– Rollback operations

– Read-consistent queries

– Oracle Flashback Query, Oracle Flashback Transaction, and Oracle Flashback Table

– Recovery from failed transactions

• The Oracle Database server saves the old value (undo data) when a process changes data in a

database. It stores the data as it exists before modifications. Capturing undo data enables you to

roll back your uncommitted data. Undo supports read-consistent and flashback queries. Undo can

also be used to “rewind” (flashback) transactions and tables.

• Read-consistent queries provide results that are consistent with the data as of the time a query

started. For a read-consistent query to succeed, the original information must still exist as undo

information. If the original data is no longer available, you receive a “Snapshot too old” error (ORA-

01555). As long as the undo information is retained, the Oracle Database server can reconstruct

data to satisfy read-consistent queries.

• Flashback queries purposely ask for a version of the data as it existed at some time in the past. As

long as undo information for that past time still exists, flashback queries can complete

successfully. Oracle Flashback Transaction uses undo to create compensating transactions, to

back out a transaction and its dependent transactions. With Oracle Flashback Table, you can

recover a table to a specific point in time.

• Undo data is also used to recover from failed transactions. A failed transaction occurs when a user

session ends abnormally (possibly because of network errors or a failure on the client computer)

before the user decides to commit or roll back the transaction. Failed transactions may also occur

when the instance crashes or you issue the SHUTDOWN ABORT command.

• In case of a failed transaction, the safest behavior is chosen, and the Oracle Database server

reverses all changes made by a user, thereby restoring the original data.

Oracle Database 23c: Administration Workshop 17 - 3

Undo information is retained for all transactions, at least until the transaction is ended by one of the

following:

• User undoes a transaction (transaction rolls back).

• User ends a transaction (transaction commits).

• User executes a DDL statement, such as a CREATE, DROP, RENAME, or ALTER statement. If the

current transaction contains any DML statements, the database server first commits the

transaction and then executes and commits the DDL as a new transaction.

• User session terminates abnormally (transaction rolls back).

• User session terminates normally with an exit (transaction commits).

The amount of undo data that is retained and the time for which it is retained depend on the amount of

database activity and the database configuration.

Note: Oracle Flashback Transaction leverages the online redo logs to mine the appropriate undo SQL for

execution. It only uses undo as an artificial time boundary, to determine a redo mining start time for the

target transaction, if a transaction start time is not supplied in the flashback transaction invocation.

Oracle Database 23c: Administration Workshop 17 - 4

Transactions and Undo Data

• Each transaction is assigned to only one undo segment.

• An undo segment can service more than one transaction at a time.

• When a transaction starts, it is assigned to an undo segment. Throughout the life of the

transaction, when data is changed, the original (before the change) values are copied into the

undo segment. You can see which transactions are assigned to which undo segments by checking

the V$TRANSACTION dynamic performance view.

• Undo segments are specialized segments that are automatically created by the database server as

needed to support transactions. Like all segments, undo segments are made up of extents, which,

in turn, consist of data blocks. Undo segments automatically grow and shrink as needed, acting as

a circular storage buffer for their assigned transactions.

• Transactions fill extents in their undo segments until a transaction is completed or all space is

consumed. If an extent fills up and more space is needed, the transaction acquires that space from

the next extent in the segment. After all extents have been consumed, the transaction either

wraps around back into the first extent or requests a new extent to be allocated to the undo

segment.

Note: Parallel DML and DDL operations can cause multiple coordinated transactions, each of

which uses its own undo segment. To learn more about parallel DML execution, see Oracle

Database Administrator’s Guide.

Oracle Database 23c: Administration Workshop 17 - 5

Storing Undo Information

• Undo information is stored in undo segments, which are stored in an undo

tablespace.

• Undo tablespaces:

‒ Are used only for undo segments

‒ Have special recovery considerations

‒ May be associated with only a single instance

‒ Require that only one of them be the current writable undo tablespace for a given

instance at any given time

Undo segments can exist only in a specialized form of tablespace called an undo tablespace. You cannot

create other segment types, such as tables, in the undo tablespace.

The Database Configuration Assistant (DBCA) automatically creates a smallfile undo tablespace. You can

also create a bigfile undo tablespace. However, in a high-volume online transaction processing (OLTP)

environment with many short concurrent transactions, contention could occur on the file header. An

undo tablespace, stored in multiple data files, can resolve this potential issue.

Although a database may have many undo tablespaces, only one of them at a time can be designated as

the current undo tablespace for any instance in the database.

Undo segments are automatically created and always owned by SYS. Because the undo segments act as a

circular buffer, each segment has a minimum of two extents. The default maximum number of extents

depends on the database block size but is very high (32,765 for an 8 KB block size).

Undo tablespaces are permanent, locally managed tablespaces with automatic extent allocation. They are

automatically managed by the database.

Because undo data is required to recover from failed transactions (such as those that may occur when an

instance crashes), undo tablespaces can be recovered only while the instance is in the MOUNT state.

Oracle Database 23c: Administration Workshop 17 - 6

Comparing Undo Data and Redo Data

Undo Redo

Record of How to undo a change How to reproduce a change

Used for Rollback, read consistency, flashback Rolling forward of database changes

Stored in Undo segments Redo log files

Undo data and redo data seem similar at first, but they serve different purposes. Undo data is needed if

there is a need to undo a change, and this occurs for read consistency and rollback. Redo data is needed

if there is a need to perform the changes again, in cases where they are lost for some reason. Undo block

changes are also written to the redo log.

The process of committing entails a verification that the changes in the transaction have been written to

the redo log file, which is persistent storage on the disk, as opposed to memory. In addition, the redo log

file is typically multiplexed. As a result, there are multiple copies of the redo data on the disk. Although

the changes may not yet have been written to the data files where the table’s blocks are actually stored,

writing to the persistent redo log is enough to guarantee consistency of the database.

Assume that a power outage occurs just before committed changes have been reflected in the data files.

This situation does not cause a problem because the transaction has been committed. When the system

starts up again, it is able to roll forward any redo records that are not yet reflected in data files at the time

of the outage.

Oracle Database 23c: Administration Workshop 17 - 7

Managing Undo

• Automatic undo management:

‒ Fully automated management of undo data and space in a dedicated undo

tablespace

‒ For all sessions

‒ Self-tuning in AUTOEXTEND tablespaces to satisfy long-running queries

‒ Self-tuning in fixed-size tablespaces for best retention

• DBA tasks in support of Flashback operations:

‒ Configuring undo retention

‒ Changing the undo tablespace to a fixed size

‒ Avoiding space and “snapshot too old” errors

The Oracle Database server provides automatic undo management, which is a fully automated

mechanism for managing undo information and space in a dedicated undo tablespace for all sessions.

The system automatically tunes itself to provide the best possible retention of undo information. More

precisely, the undo retention period for auto-extending tablespaces is tuned to be slightly longer than the

longest-running active query. For fixed-size undo tablespaces, the database dynamically tunes for best

possible retention.

Although, by default, the Oracle Database server manages undo data and space automatically, you may

need to perform some tasks if your database is using Flashback operations. The administration of undo

should prevent space errors, the use of too much space, and “snapshot too old” errors.

Oracle Database 23c: Administration Workshop 17 - 8

Comparing SHARED Undo Mode and LOCAL Undo Mode

• There are two undo modes in the multitenant architecture: SHARED and LOCAL.

‒ There is only one SHARED undo tablespace (in CDB root).

‒ There can be a LOCAL undo tablespace in each PDB.

• When is LOCAL undo mode required?

‒ Hot cloning

‒ Near-zero downtime PDB relocation

SQL> STARTUP UPGRADE;

SQL> ALTER DATABASE LOCAL UNDO ON;

Using the LOCAL undo mode is required when cloning a PDB in hot mode, performing a near-zero

downtime PDB relocation, refreshing PDBs, or using proxy PDBs.

You can set a CDB in LOCAL undo mode either at CDB creation or by altering the CDB property.

When the database property LOCAL_UNDO_ENABLED is FALSE, which is the default, there is only one

undo tablespace that is created in the CDB root, and that is shared by all containers.

When LOCAL_UNDO_ENABLED is TRUE, every container in the CDB uses LOCAL undo, and each PDB must

have its own LOCAL undo tablespace. To maintain ease of management and provisioning, undo

tablespace creation happens automatically and does not require any action from the user. When a PDB is

opened and an undo tablespace is not available, it is automatically created.

Oracle Database 23c: Administration Workshop 17 - 9

Configuring Undo Retention

• UNDO_RETENTION specifies (in seconds) how long already committed undo

information is to be retained.

• Set this parameter when:

‒ The undo tablespace has the AUTOEXTEND option enabled

‒ You want to set undo retention for LOBs

‒ You want to guarantee retention

• The UNDO_RETENTION initialization parameter specifies (in seconds) the low threshold value of

undo retention. Set the minimum undo retention period for the auto-extending undo tablespace

to be as long as the longest expected Flashback operation. For auto-extending undo tablespaces,

the system retains undo for at least the time specified in this parameter and automatically tunes

the undo retention period to meet the undo requirements of the queries. But this autotuned

retention period may be insufficient for your Flashback operations.

• For fixed-size undo tablespaces, the system automatically tunes for the best possible undo

retention period on the basis of undo tablespace size and usage history; it ignores

UNDO_RETENTION unless retention guarantee is enabled. So, for automatic undo management,

the UNDO_RETENTION setting is used for the three cases listed in the slide. In cases other than

these three, this parameter is ignored.

Oracle Database 23c: Administration Workshop 17 - 10

Categories of Undo

Category Description

Active: Uncommitted undo information Supports an active transaction and is never overwritten

Unexpired: Committed undo information Is required to meet the undo retention interval

Expired: Expired undo information Overwritten when space is required for an active
transaction

• Undo information is divided into three categories:

– Uncommitted undo information (Active): Supports a currently running transaction and is

required if a user wants to roll back or if the transaction has failed. Uncommitted undo

information is never overwritten.

– Committed undo information (Unexpired): Is no longer needed to support a running

transaction but is still needed to meet the undo retention interval. It is also known as

“unexpired” undo information. Committed undo information is retained, when possible,

without causing an active transaction to fail because of lack of space.

– Expired undo information (Expired): Is no longer needed to support a running transaction.

Expired undo information is overwritten when space is required by an active transaction.

Oracle Database 23c: Administration Workshop 17 - 11

Guaranteeing Undo Retention

This example is based on an UNDO_RETENTION setting of 900 seconds (15 minutes).

SQL> ALTER TABLESPACE undotbs1 RETENTION GUARANTEE;

• The default undo behavior is to overwrite the undo information of committed transactions that

has not yet expired rather than to allow an active transaction to fail because of lack of undo space.

• This behavior can be changed by guaranteeing retention. With guaranteed retention, undo

retention settings are enforced even if they cause transactions to fail.

• RETENTION GUARANTEE is a tablespace attribute rather than an initialization parameter. This

attribute can be changed only with SQL command-line statements.

• The syntax to change an undo tablespace to guarantee retention is:

SQL> ALTER TABLESPACE undotbs1 RETENTION GUARANTEE;

• To return a guaranteed undo tablespace to its normal setting, use the following command:

SQL> ALTER TABLESPACE undotbs1 RETENTION NOGUARANTEE;

• The retention guarantee applies only to undo tablespaces. Attempts to set it on a non-undo

tablespace result in the following error:

SQL> ALTER TABLESPACE example RETENTION GUARANTEE;

ERROR at line 1:

ORA-30044: 'Retention' can only be specified for undo tablespace.

Oracle Database 23c: Administration Workshop 17 - 12

Changing an Undo Tablespace to a Fixed Size

• Rationale:

‒ Supporting Flashback operations

‒ Limiting tablespace growth

• Steps:

‒ Run the regular workload.

‒ The self-tuning mechanism establishes the minimum required size.

‒ (Optional) Use the Enterprise Manager Cloud Control Undo Advisor, which

calculates the required size for future growth.

‒ (Optional) Change the undo tablespace to a fixed size.

• You might have two reasons for changing the undo tablespace to a fixed size: to support

Flashback operations (where you expect future use of the undo) or to prevent the tablespace from

growing too large.

• If you decide to change the undo tablespace to a fixed size, you must choose a large enough size

to avoid the following two errors:

– DML failures (because there is not enough space to create the undo for new transactions)

– “Snapshot too old” errors (because there was insufficient undo data for read consistency)

• Oracle recommends that you run a regular, full workload allowing the undo tablespace to grow to

its minimum required size. The automatically gathered statistics include the duration of the

longest-running query and the undo generation rate. Computing the minimum undo tablespace

size based on these statistics is advisable for a system without Flashback operations and for a

system for which you do not expect longer-running queries in the future.

• You can use the Enterprise Manager Cloud Control Undo Advisor to enter your desired duration

for the undo period for longer-running queries and flashback.

Note: For fixed-size undo tablespaces, the system automatically tunes for the maximum possible

undo retention period, based on undo tablespace size and usage history, and ignores

UNDO_RETENTION unless retention guarantee is enabled.

Oracle Database 23c: Administration Workshop 17 - 13

Temporary Undo: Overview

Temporary tables are widely used as scratch areas for staging intermediate results. This is because

changing those tables is much faster than with non-temporary tables. The performance gain is mainly

because no redo entries are directly generated for changes on temporary tables. However, the undo for

operations on temporary tables (and indexes) is still logged to the redo log.

Undo for temporary tables is useful for consistent reads and transaction rollbacks during the life of that

temporary object. Beyond this scope, the undo is superfluous. Therefore, it need not be persisted in the

redo stream. For instance, transaction recovery just discards undo for temporary objects.

Undo generated by temporary tables’ transactions can be stored in a separate undo stream directly in the

temporary tablespace to avoid that undo being logged in the redo stream. This mode is called temporary

undo.

Note: A temporary undo segment is session private. It stores undo for the changes to temporary tables

(temporary objects in general) belonging to the corresponding session.

Oracle Database 23c: Administration Workshop 17 - 14

Temporary Undo Benefits

• Reduces the amount of undo stored in the undo tablespaces

• Reduces the amount of redo data written to the redo log

• Enables DML operations on temporary tables in a physical standby database with

the Oracle Active Data Guard option

Enabling temporary undo provides the following benefits:

• Temporary undo reduces the amount of undo stored in the undo tablespaces. Less undo in the

undo tablespaces can result in more realistic undo retention period requirements for undo

records.

• Performance is improved because less data is written to the redo log, and components that parse

redo log records, such as LogMiner, perform better because there is less redo data to parse.

• Temporary undo enables data manipulation language (DML) operations on temporary tables in a

physical standby database with the Oracle Active Data Guard option. However, data definition

language (DDL) operations that create temporary tables must be issued on the primary database.

Oracle Database 23c: Administration Workshop 17 - 15

Enabling Temporary Undo

• Enable temporary undo for a session:

• Enable temporary undo for the database instance:

• Temporary undo mode is selected when a session first uses a temporary object.

SQL> ALTER SESSION SET temp_undo_enabled = true;

SQL> ALTER SYSTEM SET temp_undo_enabled = true;

• You can enable temporary undo for a specific session or for the entire database. When you enable

temporary undo for a session using an ALTER SESSION statement, the session creates temporary

undo without affecting other sessions. When you enable temporary undo for the system using an

ALTER SYSTEM statement, all existing sessions and new sessions create temporary undo.

• When a session uses temporary objects for the first time, the current value of the

TEMP_UNDO_ENABLED initialization parameter is set for the rest of the session. Therefore, if

temporary undo is enabled for a session and the session uses temporary objects, then temporary

undo cannot be disabled for the session. Similarly, if temporary undo is disabled for a session and

the session uses temporary objects, then temporary undo cannot be enabled for the session.

Note: Temporary undo is enabled by default for a physical standby database with the Oracle Active Data

Guard option. The TEMP_UNDO_ENABLED initialization parameter has no effect on a physical standby

database with the Active Data Guard option because of the default setting.

Oracle Database 23c: Administration Workshop 17 - 16

Monitoring Temporary Undo

SQL> SELECT to_char(BEGIN_TIME,'dd/mm/yy hh24:mi:ss') "BEGIN TIME",

2 txncount "TXNCNT", maxconcurrency, undoblkcnt, uscount "USCNT",

3 nospaceerrcnt "NOSPEERRCNT"

4 FROM v$tempundostat;

BEGIN TIME TXNCNT MAXCONCURRENCY UNDOBLKCNT USCNT NOSPEERRCNT

----------------- ------ -------------- ---------- ----- -----------

…

19/08/12 22:19:44 0 0 0 0 0

19/08/12 22:09:44 0 0 0 0 0

…

19/08/12 13:09:44 0 0 0 0 0

19/08/12 12:59:44 3 1 24 1 0

576 rows selected.

SQL>

• V$TEMPUNDOSTAT shows various statistics related to the temporary undo log for this database

instance. It displays a histogram of statistical data to show how the system is working. Each row in

the view keeps statistics collected in the instance for a 10-minute interval. The rows are in

descending order of the BEGIN_TIME column value. This view contains a total of 576 rows,

spanning a four-day cycle. This view is similar to the V$UNDOSTAT view.

• The example shows you some of the important columns of the V$TEMPUNDOSTAT view:

– BEGIN_TIME: The beginning of the time interval

– TXNCOUNT: The total number of transactions that have bound to temp undo segment within

the corresponding time interval

– MAXCONCURRENCY: The highest number of transactions executed concurrently, which

modified temporary objects within the corresponding time interval

– UNDOBLKCNT: The total number of temporary undo blocks consumed during the

corresponding time interval

– USCOUNT: The temp undo segments created during the corresponding time interval

– NOSPACEERRCNT: The total number of times the “no space left for temporary undo” error was

raised during the corresponding time interval

Note: For more information on V$TEMPUNDOSTAT, refer to Oracle Database Reference Guide.

Oracle Database 23c: Administration Workshop 17 - 17

Summary

Monitor and administer undo data

Describe the difference between undo data and redo data

Configure undo retention

Guarantee undo retention

Explain DML and undo data generation

Enable temporary undo

Oracle Database 23c: Administration Workshop 17 - 18

Creating and Managing User Accounts

Objectives

Explain the various authentication options for users

Create database users

Assign quota to users

Oracle Database 23c: Administration Workshop 18 - 2

To access the database, a user must specify a valid database user account and successfully authenticate

as required by that user account. Each database user has a unique database account. Oracle recommends

this to avoid potential security holes and provide meaningful data for certain audit activities. However,

users may sometimes share a common database account. In these rare cases, the operating system and

applications must provide adequate security for the database.

Each user account has the following, as illustrated in the slide:

• Unique username: Usernames cannot exceed 30 bytes, cannot contain special characters, and

must start with a letter. Usernames are not case-sensitive.

• Authentication method: The most common authentication method is a password.

• Default tablespace: This is a place where a user creates objects if the user does not specify some

other tablespace.

– Having a default tablespace does not imply that the user has the privilege of creating objects,

nor does the user have a quota of space in that tablespace in which to create objects. Both of

these privileges are granted separately.

– If a user does not specify a tablespace when creating an object, the object will be created in the

default tablespace assigned to the object owner. This enables you to control where the user's

objects are created.

– If an administrator does not define a default tablespace, the system-defined default

permanent tablespace is used.

– Quota for a specific tablespace is not granted through a privilege. It's done by using the ALTER

USER command, which changes the attributes for a user. However, if a DBA grants the

UNLIMITED TABLESPACE system privilege to a user, then that user can use all the space in

any tablespace.

Database User Accounts

Oracle Database 23c: Administration Workshop 18 - 3

• Temporary tablespace: This is a place where temporary objects, such as sorts and temporary

tables, are created on behalf of the user by the server. No quota is applied to temporary

tablespaces. If an administrator does not define a temporary tablespace for a user, the system-

defined temporary tablespace is used when the user creates objects.

• User profile: This is a set of resource and password restrictions assigned to the user.

• Initial consumer group: This is used by the Resource Manager.

• Account status: Users can access only “open” accounts. The account status may be “locked”

and/or “expired.”

Note: A database user is not necessarily a person. It is a common practice to create a user that owns the

database objects of a particular application, such as HR. The database user can be a device, an application,

or just a way to group database objects for security purposes. The personal identifying information of a

person is not needed for a database user.

Schemas

A schema is a collection of database objects that are owned by a database user. Schema objects are the

logical structures that directly refer to the database’s data. Schema objects include such structures as

tables, views, sequences, stored procedures, synonyms, indexes, clusters, and database links. In general,

schema objects include everything that your application creates in the database.

Oracle Database 23c: Administration Workshop 18 - 4

The SYS and SYSTEM accounts are required accounts and cannot be deleted. You supply their passwords

when you create the database instance and database in DBCA.

During installation and database creation, you can unlock and reset many of the Oracle-supplied

database user accounts.

Oracle-Supplied Administrator Accounts

Account Description

SYS Super user. Owns the data dictionary and the Automatic Workload Repository (AWR).
Used for starting up and shutting down the database instance

SYSTEM Owns additional administrative tables and views

SYSBACKUP Facilitates Oracle Recovery Manager (RMAN) backup and recovery operations

SYSDG Facilitates Oracle Data Guard operations

SYSKM Facilitates Transparent Data Encryption wallet operations

SYSRAC For Oracle Real Application Clusters (RAC) database administration tasks

SYSMAN For Oracle Enterprise Manager database administration tasks

DBSNMP Used by the Management Agent component of Oracle Enterprise Manager to monitor
and manage the database

Oracle Database 23c: Administration Workshop 18 - 5

Creating Oracle Database Users in a Multitenant Environment

You can create two types of database users in a multitenant environment:

• Common user: The user is replicated in all existing and future containers. Oracle supplies several

common user accounts for database administrators to use. A common user that you create, by

default, must be given a name that starts with C## (for example, c##c_admin1). Usernames are

not case sensitive. The COMMON_USER_PREFIX parameter specifies a prefix for common users,

roles, and profiles in a container database. To create a common user, log in to the root container

or application root, issue the CREATE USER command, and include the CONTAINER=ALL clause.

For example:

SQL> CONNECT / AS SYSDBA

SQL> CREATE USER c##c_admin1 IDENTIFIED BY x CONTAINER=ALL;

• Local user: The user is created in a single PDB only. Local users cannot be created in a root

container or in an application root container. A local user cannot create a common user. To create

a local user, log in to the PDB where you want to create the local user and issue the CREATE USER

command. For example:

SQL> CONNECT SYS@PDB1 AS SYSDBA

SQL> CREATE USER l_user1 … ;

In the illustration in the slide, the common user c##c_admin1 exists in the root container and all PDBs,

while local user l_user1 only exists in PDB1 and local user l_user2 only exists in PDB2.

You can use tools such as SQL*Plus and SQL Developer to create user accounts in the Oracle database.

Oracle Database 23c: Administration Workshop 18 - 6

Creating Common Users in the CDB and PDBs

A CDB common user is created in all containers of the CDB:

In an application container, a common user is created in the

application root, seed, and application PDBs:

CDB

A local user is created in one PDB.

Note: All commands related to common entities created,
altered, or dropped in application containers must be performed
within an INSTALL/UPGRADE/PATCH BEGIN/END block and
be replicated in application PDBs after sync.

c##u1

CDB root

c##u1

PDB_HR

Application Container PDB_APP

Application root

c##u1
app_u1

c##u1 app_u1

PDB_APP1

PDB_APP2

c##u1
app_u1

l_user1

SQL> CONN sys@PDB_APP AS SYSDBA

SQL> ALTER PLUGGABLE DATABASE APPLICATION

app1 BEGIN INSTALL '1.1' ;

SQL> CREATE USER app_u1 IDENTIFIED BY x

CONTAINER=ALL;

SQL> CREATE USER l_user1 … ;

SQL> CONNECT / AS SYSDBA

SQL> CREATE USER c##u1 IDENTIFIED BY x CONTAINER=ALL;

A common user is a user that has the same user name and authentication credentials across multiple

PDBs of the CDB or an application container, unlike a local user that exists in only one PDB.

A common user cannot have the same name as any local user across all the PDBs. A common user can be

created in the CDB root or in an application root: a common user is a database user that has the same

identity in the CDB root and in every existing and future PDB in the CDB or in an application root and in

every existing and future application PDB in the application container. An application common user does

not require a prefix like a CDB common user.

To create an application common user, you must be logged in to the application root. The application

common user is replicated in all application PDBs when the application PDBs are synchronized with the

application root.

A local user can be created in a specific PDB and cannot be created in the CDB root or in an application

root. A local user cannot create a common user.

Note: If an application PDB is closed, the CDB common users, application common users, and local users

of the application PDB are not visible because the metadata is retrieved from the PDB SYSTEM tablespace.

Oracle Database 23c: Administration Workshop 18 - 7

Application designers may want to create accounts that contain the application data dictionary, but are

not allowed to log in to the instance. This can be used to enforce data access through the application,

separation of duties at the application level, and other security mechanisms.

In addition, utility accounts can be created but remain inaccessible by denying the ability to log in except

under controlled situations.

You can create a user account with the NO AUTHENTICATION clause to ensure that the account is not

permitted to log in to the instance. Removing the password and the ability to log in essentially leaves just

a schema. The schema account can be altered to allow login, but can then have the password removed.

The ALTER USER statement can be used to disable or re-enable the login capability.

The AUTHENTICATION_TYPE column in the DBA_USERS view contains NONE when NO AUTHENTICATION

is set, and PASSWORD when a password is set for the user account.

Most of the Oracle-supplied schemas are schema only accounts, including the Database Vault–supplied

schemas such as DVSYS and DVF, and the Oracle Label Security–supplied LBACSYS schema. The benefit

of this functionality is that administrators no longer have to periodically rotate the passwords for these

Oracle Database–provided schemas. This functionality also reduces the security risk of attackers using

default passwords to hack into these accounts.

Accounts with administrator privileges such as SYSOPER or SYSBACKUP can also be schema-only

accounts. Schema-only accounts can be granted administrator privileges.

Creating Schema Only Accounts

• It ensures that a user cannot log in to the instance.

• It enforces data access through the application.

• It secures schema objects by preventing the connected schema from dropping

objects.

• A schema only account cannot connect through a database link.

• Oracle-supplied schemas created with the NO AUTHENTICATION clause are schema

only accounts.

• Administrator privileges can be granted to and revoked from schema only accounts.

SQL> CREATE USER schema_noauth NO AUTHENTICATION;

Oracle Database 23c: Administration Workshop 18 - 8

Your choice of authentication is influenced by whether you intend to administer your database locally on

the same system where the database resides or whether you intend to administer many different

databases from a single remote client.

Authenticating Users

• Every user, including administrators, must be authenticated when connecting to a
database instance.

• Authentication verifies that the user is a valid database user and establishes a trust
relationship for further interactions.

• Authentication also enables accountability by making it possible to link access and
actions to specific identities.

Oracle Database 23c: Administration Workshop 18 - 9

Authenticating Users

• The following authentication methods are possible:

‒ Password (usually for database users)

‒ Operating system (OS) authentication

‒ Password file (for system administrative privileged users only)

‒ Strong authentication with Kerberos, SSL, or directory authentication

• A system administrative privileged user must use OS authentication, password file
authentication, or strong authentication.

‒ These methods can authenticate when the database is available or unavailable (not
started).

Oracle Database 23c: Administration Workshop 18 - 10

Password authentication is also referred to as “authentication by the Oracle Database server.”

If you decide to set password expiration, make sure that users have the ability to change the password.

Some applications do not have this functionality.

Using Password Authentication

• Create each user with an associated password that must be supplied when the user

attempts to establish a connection.

• When setting up a password, you can expire the password immediately, which

forces the user to change the password after first logging in.

• All passwords created in Oracle Database are case-sensitive by default.

• Passwords may contain multibyte characters and are limited to 30 bytes.

Oracle Database 23c: Administration Workshop 18 - 11

Password authentication is also referred to as “authentication by the Oracle Database server.”

If you decide to set password expiration, make sure that users have the ability to change the password.

Some applications do not have this functionality.

Using Password Authentication

• Passwords are always automatically and transparently encrypted by using the

Advanced Encryption Standard (AES) algorithm during network (client/server and

server/server) connections before sending them across the network.

• A password management policy, controlled through user profiles, can be used to:

‒ Set a password expiration period

‒ Grace period for changing a password, and

‒ Other attributes.

Oracle Database 23c: Administration Workshop 18 - 12

For more information, see the following sources in Oracle Database Administrator's Guide:

• Preparing to Use Password File Authentication

• Connecting Using Password File Authentication

On UNIX and Linux, the password file is called orapwORACLE_SID and is stored in

$ORACLE_HOME/dbs. On Windows, the file is called PWDORACLE_SID.ora and is stored in

$ORACLE_HOME\database.

If your concern is that the password file might be vulnerable or that the maintenance of many password

files is a burden, strong authentication can be implemented.

You can query V$PWFILE_USERS to view information in the password file.

Using Password File Authentication

• You can use password file authentication for an Oracle database instance and for an

Oracle Automatic Storage Management (Oracle ASM) instance.

• A password file stores database usernames and case-sensitive passwords for

administrator users (common and local administrators).

• To prepare for password file authentication, you must:

‒ Create the password file. DBCA creates a password file during execution.

‒ Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter

‒ Grant system administrative privileges (for example, GRANT SYSDBA TO mydba)

Oracle Database 23c: Administration Workshop 18 - 13

Oracle Universal Installer creates operating system groups, assigns them specific names, and maps each

group to a specific system privilege. The table in the next slide shows this mapping for a UNIX or Linux

environment. Membership in one of these operating system groups enables a database administrator to

authenticate to the database instance through the operating system rather than with a database

username and password. This is known as operating system authentication.

The special system privileges are not exercised unless you include them in your CONNECT clause. For

example, assume that the HR user is granted the SYSDBA privilege and connects with that privilege.

Notice that the current user becomes SYS:

SQL> CONNECT hr@PDB1 AS SYSDBA

Enter password: ******

Connected.

SQL> SHOW USER

USER is "SYS"

However, if the HR user logs in to PDB1 without including the AS SYSDBA clause, the current user is HR

and the user does not have the SYSDBA privilege.

SQL> CONNECT hr@PDB1

Enter password: ******

Connected.

SQL> SHOW USER

USER is "HR"

Using OS Authentication

• Oracle Universal Installer creates operating system groups, assigns them specific names, and maps

each group to a specific system privilege.

‒ Example: Members of the dba group are granted SYSDBA

• As a group member, you can be authenticated, enabled as an administrative user, and connected

to a local database:

SQL> CONNECT / AS SYSDBA

SQL> CONNECT / AS SYSOPER

SQL> CONNECT / AS SYSBACKUP

SQL> CONNECT / AS SYSDG

SQL> CONNECT / AS SYSKM

SQL> CONNECT / AS SYSRAC

• If you are not a member of one of these OS groups, you will not be able to connect as an

administrative user via OS authentication.

Oracle Database 23c: Administration Workshop 18 - 14

If your operating system permits, you can have it authenticate users. They will not need to provide a

username or password when connecting to the database instance.

If you use operating system authentication, set the OS_AUTHENT_PREFIX initialization parameter and

use this prefix in Oracle usernames. The OS_AUTHENT_PREFIX parameter defines a prefix that the Oracle

database adds to the beginning of each user’s operating system account name. The default value of this

parameter is OPS$ for backward compatibility with the previous versions of the Oracle software. The

Oracle database compares the prefixed username with the Oracle usernames in the database when a user

attempts to connect. For example, assume that OS_AUTHENT_PREFIX is set as follows:

OS_AUTHENT_PREFIX=OPS$

If a user with an operating system account named tsmith needs to connect to an Oracle database and

be authenticated by the operating system, the Oracle database checks whether there is a corresponding

database user OPS$tsmith and, if so, allows the user to connect. All references to a user who is

authenticated by the operating system must include the prefix, as seen in OPS$tsmith. The text of the

OS_AUTHENT_PREFIX initialization parameter is case-sensitive on some operating systems.

Oracle Database 23c: Administration Workshop 18 - 15

If you are not a member of one of the OS groups listed in the slide, you will not be able to connect as an

administrative user via OS authentication. That is, CONNECT / AS SYSDBA will fail. However, you can

still connect using other authentication methods (for example, network, password, or directory-based

authentication).

OS Authentication for Privileged Users

OS Group
UNIX or Linux
User Group

Special System Privilege
Granted to Members

Oracle Software Group (top level group) oinstall

Allowed to create and delete database
files on the OS. All database
administrators belong to this group.

Database Administrator Group (OSDBA) dba
SYSDBA (Connects you as the SYS

user)

Database Operator Group (OSOPER) – optional oper
SYSOPER (Connects you as the
PUBLIC user)

Database Backup and Recovery Group (OSBACKUPDBA) backupdba SYSBACKUP

Data Guard Administrative Group (OSDGDBA) dgdba SYSDG

Encryption Key Management Administrative Group
(OSKMDBA)

kmdba SYSKM

Real Application Cluster Administrative Group
(OSRACDBA)

rac SYSRAC

Oracle Database 23c: Administration Workshop 18 - 16

A quota is a space allowance in a given tablespace. By default, a user has no quota on any of the

tablespaces.

You must not provide a quota to users on the SYSTEM or SYSAUX tablespaces. Typically, only the SYS and

SYSTEM users are able to create objects in the SYSTEM or SYSAUX tablespaces.

You do not need a quota on an assigned temporary tablespace or any undo tablespaces. You do not need

to have a quota to insert, update, and delete data in an Oracle database. The only users that need quota

are the accounts that own the database objects. It is typical when installing application code that the

installer creates database accounts to own the objects. Only these accounts need quotas. Other database

users can be granted permission to use these objects without a quota.

The Oracle server checks the quota when a user creates or extends a segment.

For activities that are assigned to a user schema, only those activities that use space in a tablespace count

against the quota. Activities that do not use space in the assigned tablespace do not affect the quota

(such as creating views or using temporary tablespaces).

The quota is replenished when objects owned by the user are dropped with the PURGE clause or when the

objects owned by the user in the recycle bin are purged.

Assigning Quotas

• A quota is a space allowance in a given tablespace.

• By default, a user has no quota on any of the tablespaces.

• Database accounts that need quota are those that own database objects

‒ Example: Accounts for applications

• Only those activities that use space in a tablespace count against quota.

Oracle Database 23c: Administration Workshop 18 - 17

A quota is a space allowance in a given tablespace. By default, a user has no quota on any of the

tablespaces.

You must not provide a quota to users on the SYSTEM or SYSAUX tablespaces. Typically, only the SYS and

SYSTEM users are able to create objects in the SYSTEM or SYSAUX tablespaces.

You do not need a quota on an assigned temporary tablespace or any undo tablespaces. You do not need

to have a quota to insert, update, and delete data in an Oracle database. The only users that need quota

are the accounts that own the database objects. It is typical when installing application code that the

installer creates database accounts to own the objects. Only these accounts need quotas. Other database

users can be granted permission to use these objects without a quota.

The Oracle server checks the quota when a user creates or extends a segment.

For activities that are assigned to a user schema, only those activities that use space in a tablespace count

against the quota. Activities that do not use space in the assigned tablespace do not affect the quota

(such as creating views or using temporary tablespaces).

The quota is replenished when objects owned by the user are dropped with the PURGE clause or when the

objects owned by the user in the recycle bin are purged.

Assigning Quotas

• Oracle server checks quota when you create or extend a segment.

• Activities that don't use space don't impact quota

‒ Example: CREATE VIEW

• You can be granted permission to use objects without needing any quota.

• Quota is not needed for assigned temporary tablespaces or undo tablespaces.

• A user's quota is replenished when objects are dropped with the PURGE clause or

when objects in the recycle bin are purged.

Oracle Database 23c: Administration Workshop 18 - 18

You have three options for providing a quota for a user on a tablespace:

• UNLIMITED: Allows the user to use as much space as is available in the tablespace

• Value: Number of kilobytes or megabytes that the user can use. This does not guarantee that the

space is set aside for the user. This value can be larger or smaller than the current space that is

available in the tablespace.

• UNLIMITED TABLESPACE system privilege: Overrides all individual tablespace quotas and gives

the user unlimited quota on all tablespaces, including SYSTEM and SYSAUX. This privilege must be

granted with caution.

Assigning Quotas

• Options to provide quota for a user on a tablespace:

‒ UNLIMITED

‒ Value

‒ UNLIMITED TABLESPACE system privilege

Oracle Database 23c: Administration Workshop 18 - 19

Summary

Explain the various authentication options for users

Assign quota to users

Create database users

Oracle Database 23c: Administration Workshop 18 - 20

Configuring Privilege and Role Authorization

Objectives

Create roles

Revoke privileges and roles from users and other roles

Grant system, schema, and object privileges to database users,
commonly and locally

Grant roles to users and other roles, commonly and locally

Oracle Database 23c: Administration Workshop 19 - 2

Privileges

• Object: Enables users to access and manipulate a specific object

• Schema: Enables certain system privileges to be granted on all objects of a schema

• System: Enables users to perform particular actions in the database

System privilege:
Create session

HR_DBA

Object privilege:
Update employees

Schema privilege:
Privilege on
all schema objects

A privilege is a right to execute a particular type of SQL statement or access another user’s object.

Privileges are divided into three categories:

• Object privileges: Object privileges allow a user to perform a particular action on a specific object,

such as a table, view, sequence, procedure, function, or package. Without specific permission,

users can access only their own objects. Object privileges can be granted by the owner of an

object, by the administrator, or by someone who has been explicitly given permission to grant

privileges on the object.

• Schema privileges: This feature allows certain system privileges to be granted on all objects of a

schema. When such a schema-level privilege is granted, the grantee will have the privilege on all

the objects in the schema on which the grant has been made. These privileges will also be

applicable on all the objects that will be created in the future in the schema on which the grant has

been made. Schema-level privilege requires a separate level of validation between Object and

System privileges, therefore, it could slightly effect SQL performance.

• System privileges: Each system privilege allows a user to perform a particular database operation

or class of database operations. For example, the privilege to create tablespaces is a system

privilege. System privileges can be granted by the administrator or by someone who has been

given explicit permission to administer the privilege. There are more than 170 distinct system

privileges. Many system privileges contain the ANY clause.

Oracle Database 23c: Administration Workshop 19 - 3

Each system privilege allows a user to perform a particular database operation or class of database

operations. System privileges can be granted by the administrator or by someone who has been given

explicit permission to administer the privilege. You can administer system privileges when you create a

user or at a later time. Carefully consider security requirements before granting system permissions.

There are more than 250 distinct system privileges. A few are listed here:

• CREATE SESSION: Enables a user to connect to a database instance

• DROP ANY OBJECT

• CREATE TABLESPACE

• DROP TABLESPACE

• ALTER TABLESPACE

• CREATE LIBRARY

• CREATE ANY DIRECTORY

• GRANT ANY OBJECT PRIVILEGE

• ALTER DATABASE

• ALTER SYSTEM

System Privileges

• Each system privilege allows a user to perform a particular database operation or

class of database operations.

• Administrators have special system privileges.

• A system privilege with the ANY clause means the privilege applies to all schemas

except SYS, not just your own.

• If you grant a system privilege with the ADMIN OPTION enabled, you enable the

grantee to administer the system privilege and grant it to other users.

Oracle Database 23c: Administration Workshop 19 - 4

ANY Clause

Many system privileges contain an ANY clause, which means the privilege applies to all schemas, not just

your own. For example, the SELECT ANY TABLE system privilege allows you to retrieve data from all

tables and views, including those from schemas owned by other users. The SYS user and users with the

DBA role are granted all the ANY privileges; therefore, they can do anything to any data object. You can

control the scope of all system privileges, including those with the ANY clause, by using Oracle Database

Vault.

ADMIN OPTION

If you grant a system privilege with ADMIN OPTION enabled, you enable the grantee to administer the

system privilege and grant it to other users. The SQL syntax for granting system privileges is:

SQL> GRANT <system_privilege> TO <grantee clause> [WITH ADMIN OPTION]

Oracle Database 23c: Administration Workshop 19 - 5

There are seven special system privileges that are usually granted only to administrators. Anyone who is

granted one of these privileges is referred to as a system administrative privileged user (privileged user,

for short).

Only users who are granted the SYSDBA, SYSOPER, SYSASM, and SYSRAC privileges are allowed to start

up and shut down the Oracle database.

The SYSBACKUP, SYSDG, and SYSKM privileges enable you to connect to the database even if the

database is not open.

Users with explicit object privileges or those who connect with administrative privileges (SYSDBA) can

access objects in the SYS schema. You can grant the SELECT ANY DICTIONARY system privilege to users

who require access to tables created in the SYS schema. This system privilege allows query access to any

object in the SYS schema, including tables created in that schema.

System Privileges for Administrators

Privilege Description

SYSDBA Perform all administrative tasks in the database, including create and drop a database, open and
mount a database, start up and shut down an Oracle database, create an SPFILE, put a database
in or remove a database from ARCHIVELOG mode, perform incomplete recovery operations,
patch, and migrate. This privilege enables you to connect as the SYS user.

SYSOPER Perform similar administration tasks as the SYSDBA privilege, but without the ability to look at

user data. For example, you can start up and shut down the database, create an SPFILE, and
perform complete recovery operations (not incomplete recovery operations).

SYSASM Start up, shut down, and administer an Automatic Storage Management instance.

SYSBACKUP Perform backup and recovery operations by using RMAN or SQL*Plus.

SYSDG Perform Data Guard operations by using Data Guard Broker or the DGMGRL command-line
interface.

SYSKM Manage Transparent Data Encryption wallet operations.

SYSRAC Perform day-to-day administration tasks on an Oracle Real Application Clusters (RAC) cluster.

Oracle Database 23c: Administration Workshop 19 - 6

Schema-Level Privilege Grants

This feature allows certain system privileges to be granted on a schema. When such a schema-level

privilege is granted, the grantee will have the privilege on all the objects in the schema on which the grant

has been made. These privileges will also be applicable on all the objects which will be created in the

future in the schema on which the grant has been made.

Of all the system privileges supported by Oracle database, the system privileges that are not associated

with schema qualified objects will not be considered for schema-level privileges. For example, schema

objects like directory and dictionary are always owned by SYS. Hence, further scoping of these relevant

system privileges to schema-level privileges is not required. The following is the list of commonly used

system privileges that will not be part of a schema-level privilege:

• Administrative Privileges: sysdba, sysoper, sysasm, sysbackup, sysdg, syskm

• System: alter database, alter system, audit system, alter resource cost

• Session: create session, alter session, restrict session

• Resumable Space Allocation: resumable

• Tablespace: create tablespace, alter tablespace, manage tablespace, drop tablespace, unlimited

tablespace

• Rollback Segment: create rollback segment, alter rollback segment, drop rollback segment

• Transaction: force transaction, force any transaction

• Resource Management: administrate resource manager

• User: create user, become user, alter user, drop user

Schema-Level Privileges

Schema-Level Privilege Grants:

• This feature allows certain system privileges to be granted on a schema.

‒ When such a schema-level privilege is granted, the grantee will have the privilege

on all the objects in the schema on which the grant has been made.

‒ These privileges will also be applicable on all the objects that will be created in the

future in the schema on which the grant has been made.

Oracle Database 23c: Administration Workshop 19 - 7

• Role: create role, drop any role, grant any role, alter any role

• Profile: create profile, alter profile, drop profile

• Public Synonym: create public synonym, drop public synonym

• Database Link: create database link, create public database link, drop public database link

• Directory: create any directory, drop any directory, read, write

• Pluggable Database: create pluggable database, set container

• Application Context: create any context, drop any context

• Stored Outline: create any outline, alter any outline, drop any outline

• Database Trigger: administer database trigger

• Debugging: debug connect session

• Dictionary Protection: select any dictionary, analyze any dictionary

• Export/Import: export full database, import full database

• Advisor Framework: advisor, administer sql tuning set

• Edition: create any edition, drop any edition

• Flashback: flashback archive administer, select any transaction

• Key Management: administer key management

• Logminer: Logmining

• Plan Management: administer SQL management object

• Database Change Notification: change notification

• Application Continuity: keep date time, keep sysguid

• Recycle Bin: Purge DBA_Recyclebin

Oracle Database 23c: Administration Workshop 19 - 8

Schema-Level Privilege Performance

Previously, when the privilege check happened on an object for any access, a check was made to

determine if the user had object privilege on the object. If the user didn’t have the object privilege, then a

check was made to determine if the user had the much more powerful system privilege, which would

satisfy the access requested. With the addition of schema-level privilege, one more check will be needed

in between the object privilege and system privilege checks, to determine if the user has the relevant

privilege on the schema of the object to satisfy the requested access. This additional check will add a

negligible amount of time to statement execution and, therefore, no performance tuning will be required.

Schema-Level Privileges

Schema-Level Privilege Performance:

• With the addition of a schema-level privilege, one more check is needed in between

the object privilege and system privilege checks.

‒ Determines if the user has the relevant privilege on the schema of the object to

satisfy the requested access.

• This additional check takes negligible amount of time for statement execution and,

therefore, no performance tuning is required.

Oracle Database 23c: Administration Workshop 19 - 9

Schema-Level Privilege Security

Schema-level privileges will have to be granted to users with due diligence as they provide access to all

the objects in the schema. Schema-level privileges can be granted by:

• Schema owners, who will be able to grant a schema-level privilege on their own schema to any

user or role

• Users who have a schema-level privilege with WITH ADMIN OPTION will be able to grant that

schema-level privilege to any user or role

• Users with the GRANT ANY SCHEMA PRIVILEGE system privilege will be able to grant any

schema-level privilege to any user or role

Schema-Level Privileges

Schema-Level Privilege Security:

• Schema-level privileges can be granted by the following:

‒ Schema owners who will be able to grant a schema-level privilege on their own

schema to any user or role

‒ Users who have a schema-level privilege with WITH ADMIN OPTION will be able to

grant that schema-level privilege to any user or role

‒ Users with the GRANT ANY SCHEMA PRIVILEGE system privilege will be able to

grant any schema-level privilege to any user or role

Oracle Database 23c: Administration Workshop 19 - 10

Schema-Level Privileges

Granting and Revoking a Schema-Level Privilege:

• Granting a schema-level privilege:

Grant <Schema-Privilege> on schema <Schema-Name> to user|role

Grant ALL PRIVILEGES on schema <Schema-Name> to user|role

• Revoking a schema-level privilege:

Revoke <Schema-Privilege> on schema <Schema-Name> from user|role

Revoke ALL PRIVILEGES on schema <Schema-Name> from user|role

Oracle Database 23c: Administration Workshop 19 - 11

Four views that display schema-level privileges will be created. These are:

• DBA_SCHEMA_PRIVS: This view can be accessed by the DBA role and lists all the schema-level

privileges granted to users or roles in the database.

• USER_SCHEMA_PRIVS: This view can be accessed by the current user in the session and lists all

the schema-level privileges granted to the current user.

• ROLE_SCHEMA_PRIVS: This view can be accessed by the current user in the session and lists all

the schema-level privileges granted to the enabled roles of current user.

• SESSION_SCHEMA_PRIVS: This view can be accessed by the current user in the session and lists

all the schema-level privileges granted to the current user and the schema-level privileges granted

to the enabled roles of the current user.

Viewing Privilege Analysis Results for Schema-Level Privileges:

The following views can be used to display the results of the analysis generated using the

DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT procedure:

• DBA_USED_SCHEMA_PRIVS

• DBA_USED_SCHEMA_PRIVS_PATH

• DBA_UNUSED_SCHEMA_PRIVS

• DBA_UNUSED_SCHEMA_PRIVS_PATH

Schema-Level Privileges

Viewing Schema-Level Privileges:

• The following views can be used to display schema-level privileges:

‒ DBA_SCHEMA_PRIVS

‒ USER_SCHEMA_PRIVS

‒ ROLE_SCHEMA_PRIVS

‒ SESSION_SCHEMA_PRIVS

Oracle Database 23c: Administration Workshop 19 - 12

New Developer Role and Simplified Schema Privileges

Schema-Level Privilege Example:

$ sqlplus sys/WElcome123##@pdbsec as sysdba

Connected.

SQL> Grant CEATE ANY TABLE, INSERT ANY TABLE, SELECT ANY TABLE

on schema HR to app_dev;

Grant succeeded.

Oracle Database 23c: Administration Workshop 19 - 13

Object privileges allow a user to perform a particular action on a specific object, such as a table, view,

sequence, procedure, function, or package.

Object privileges can be granted by the owner of an object, by the administrator, or by someone who has

been explicitly given permission to grant privileges on the object.

Object Privileges

• These privileges allow a user to perform a particular action on a specific object.

• Without specific permission, users can access only their own objects.

• Object privileges can be granted by:

‒ The owner of an object

‒ The administrator

‒ Someone who has been explicitly given permission to grant privileges on the object

• The SQL syntax for granting object privileges is:

GRANT <object_privilege> ON <object> TO <grantee clause>

[WITH GRANT OPTION]

Oracle Database 23c: Administration Workshop 19 - 14

Granting Privileges in a Multitenant Environment

• Commonly: Grant the user a privilege in all containers of a CDB.

• Locally: Grant the user a privilege in a single PDB only.

SQL> CONNECT / AS SYSDBA

SQL> GRANT create session TO c##c_admin1 CONTAINER=ALL;

SQL> CONNECT SYS@PDB1 AS SYSDBA

SQL> GRANT logmining TO l_user1;

In a multitenant environment, you can grant a privilege to a user in two ways:

• Commonly: You grant the user the privilege in all containers of a CDB. In an application container,

a common privilege is granted to a grantee in the application root and application PDBs. To grant

a privilege commonly, you must log in to the root container or an application root container and

issue the GRANT command with the CONTAINER=ALL clause.

• Locally: You grant the user the privilege in a single PDB only. To grant a privilege locally, log in to

the PDB and issue the GRANT command.

To switch to a different container, a common user must have the SET CONTAINER privilege in the current

container. Alternatively, a common user can start a new database session whose initial current container

is the container the user wants, relying on the CREATE SESSION privilege in that PDB. Be aware that

commonly granted privileges that have been made to common users may interfere with the security

configured for individual PDBs.

Oracle Database 23c: Administration Workshop 19 - 15

The diagram in the slide illustrates the following:

• The c##c_admin1 common user is granted the CREATE SESSION privilege commonly, which

applies the privilege to that user in all containers. In PDB2, c##c_admin1 is also granted the

LOGMINING privilege locally. c##c_admin1 does not have the LOGMINING privilege in any other

container.

• The local user, l_user1, exists in PDB1 only and is granted the LOGMINING privilege. If the same

user existed in another PDB (as a totally separate user), the LOGMINING privilege would not be

applied.

Considerations

Step 1: Create a common user when the same user has to perform the same actions in all PDBs in the

CDB. Otherwise, create the user as a local user in a PDB.

Step 2: Ask yourself, do you want the common user who exists in each PDB to have the same privileges in

the PDBs?

• If yes, then you commonly grant the privileges to the common user. Connect to the CDB as a user

who is privileged enough to do it and grant privilege1, privilege2, and so on to the common user by

using the CONTAINER=ALL clause.

• If no, then you locally grant the privileges to the common user. Connect to the PDB as a user who

is privileged enough to do it and grant privilege1, privilege2, and so on to the common user.

Granting Privileges: Example

Oracle Database 23c: Administration Workshop 19 - 16

Using Roles to Manage Privileges

• Roles:

‒ Used to group privileges and roles together

‒ Facilitate the granting of multiple privileges or roles to users

• Benefits of roles:

‒ Easier privilege management

‒ Dynamic privilege management

‒ Selective availability of privileges

A role is a named group of related privileges that are granted to users or other roles.

You can use roles to administer database privileges. You can add privileges to a role and grant the role to

a user. The user can then enable the role and exercise the privileges granted by the role. A role contains

all privileges that are granted to that role and all privileges of other roles that are granted to it.

Roles provide the following benefits with respect to managing privileges:

• Easier privilege management: Use roles to simplify privilege management. Rather than granting

the same set of privileges to several users, you can grant the privileges to a role and then grant

that role to each user.

• Dynamic privilege management: If the privileges associated with a role are modified, all users

who are granted the role acquire the modified privileges automatically and immediately.

• Selective availability of privileges: Roles can be enabled and disabled to turn privileges on and

off temporarily. This allows the privileges of the user to be controlled in a given situation.

Oracle Database 23c: Administration Workshop 19 - 17

Assigning Privileges to Roles and Assigning Roles to Users

HR_CLERKHR_MGR

Delete
employees

Select
employees

Update
employees

Insert
employees

Create
job

Jenny

RachelDavid
Users

Privileges

Roles

In most systems, it is time-consuming and error-prone to grant necessary privileges to each user

individually. Oracle software provides for easy and controlled privilege management through roles. Roles

are named groups of related privileges that are granted to users or other roles. Roles are designed to ease

the administration of privileges in the database and, therefore, improve security.

Role Characteristics

• Privileges are granted to and revoked from roles as though the role were a user.

• Roles are granted to and revoked from users or other roles as though they were system privileges.

• A role can consist of both system and object privileges.

• A role can be enabled or disabled for each user who is granted the role.

• A role can require a password to be enabled.

• Roles are not owned by anyone, and they are not in any schema.

In the example in the slide, the SELECT and UPDATE privileges on the employees table and the CREATE

JOB system privilege are granted to the HR_CLERK role. DELETE and INSERT privileges on the

employees table and the HR_CLERK role are granted to the HR_MGR role.

The manager is granted the HR_MGR role and can now select, delete, insert, and update the employees

table.

Oracle Database 23c: Administration Workshop 19 - 18

The table in the slide lists some commonly used predefined roles in Oracle Database.

You must not alter the privileges granted to Oracle-supplied roles without the assistance of Oracle

Support because you may inadvertently disable the needed functionality. The SYS and SYSTEM accounts

have the DBA role granted to them by default.

Oracle-Supplied Roles

Account Description

DBA Includes most system privileges and several other roles. Do not grant this role
to nonadministrators.

Users with this role can connect to the CDB or PDB only when it is open.

RESOURCE CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE

PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER,

CREATE TYPE

SCHEDULER_ADMIN CREATE ANY JOB, CREATE EXTERNAL JOB, CREATE JOB, EXECUTE

ANY CLASS, EXECUTE ANY PROGRAM, MANAGE SCHEDULER

SELECT_CATALOG_ROLE SELECT privileges on data dictionary objects

DB_DEVELOPER_ROLE The Developer role will be granted to the application schema owner account to
provide all the required privileges for designing and managing the application
schema using the most complex new schema structures such as Analytical
Views, Hierarchy, Attribute Dimension, etc.

Oracle Database 23c: Administration Workshop 19 - 19

There are two ways to grant a role in a multitenant architecture:

• Commonly: You grant the role to the user (or role) in all containers. Do this if the user needs to

perform the same operation in all containers. To grant a role commonly, log in to the root

container or an application root container and issue the GRANT command to a common user (or

common role) with the CONTAINER=ALL clause. The role that you grant must be a common role

before you can grant it commonly.

• Locally: You grant the role to a user (or role) in one PDB only. To grant a role locally, log in to the

PDB where the user exists and issue the GRANT command without the CONTAINER=ALL clause.

The role that you grant can be a common or local role.

Granting Roles in a Multitenant Environment

• Commonly: Grant the role to the user (or role) in all containers.

• Locally: Grant the role to a user (or role) in one PDB only.

SQL> CONNECT SYS@PDB1 AS SYSDBA

SQL> GRANT <common or local role> TO <common or local user>;

SQL> CONNECT / AS SYSDBA

SQL> GRANT <common role> TO <common user or role> CONTAINER=ALL;

Oracle Database 23c: Administration Workshop 19 - 20

The diagram in the slide illustrates:

• A common role named c##CDB_ADMIN is created in all containers. This role consists of the

SYSDBA privilege and is created for users who need to perform maintenance operations on the

entire CDB. The common user, c##c_admin1, who exists in every container, is granted the

c##CDB_ADMIN role commonly, meaning c##c_admin1 is granted that role in every container.

• A local role named PDB1_ADMIN is created and available in PDB1 only. This role consists of the

DBA role and the CREATE SESSION privilege and is created for users who manage PDB1. The

common user named c##c_admin1 is granted this role only in PDB1.

• A local role named PDB2_USER is created and available in PDB2 only. The local user named

tsmith, who exists only in PDB2, is granted the PDB2_USER role.

Granting Roles: Example

Oracle Database 23c: Administration Workshop 19 - 21

You can use the following security measures to make roles more secure:

• Make a role nondefault. Not all privileges and roles granted to a user need to be available to that
user at logon. You can configure specific roles to be enabled by default and set the other roles to

be nondefault (disabled). The user can enable the nondefault roles when needed by using the SET
ROLE command. For example, user tsmith is granted both the HRCLERK and HRMANAGER roles on

a PDB. In addition, you want to automatically enable only the granted HRCLERK role after logon.
The HRMANAGER role has more privileges and contains the HRCLERK role. To accomplish this, you

configure tsmith's default role to be HRCLERK, so when tsmith logs in, only privileges from the
HRCLERK role are enabled. When she needs to operate as the manager, she enables the

HRMANAGER role.

• To configure default roles for a user, use the ALTER USER command with the DEFAULT ROLE

clause. In the DEFAULT ROLE clause, you cannot specify a role that is a member of another role

(that is, a subrole).

– Note that the SET ROLE command disables roles you don't specify in the command.

• Use role authentication. Have a role require additional authentication by using the IDENTIFIED

clause to indicate that a user must be authorized by a specified method before the role is enabled
with the SET ROLE statement. The default authentication for a role is None. You can define role

authentication in Enterprise Manager Cloud Control, but not in Enterprise Manager Database

Express.

• Create application roles. Create secure application roles that a user must enable by executing a

PL/SQL procedure successfully. The PL/SQL procedure can check things, such as the user’s

network address, the program that the user is running, the time of day, and other elements
needed, to properly secure a group of permissions.

CREATE ROLE secure_application_role IDENTIFIED USING

<security_procedure_name>

Making Roles More Secure

• Roles are usually enabled by default, which means that if a role is granted to a user,

then that user can exercise the privileges given to the role immediately.

• Default roles are assigned to the user at connect time.

• Use the following security measures to make roles more secure:

‒ Make a role nondefault.

‒ Use role authentication.

‒ Create application roles.

Oracle Database 23c: Administration Workshop 19 - 22

Revoking Roles and Privileges

• You can use the REVOKE statement to:

‒ Revoke system privileges from users and roles

‒ Revoke roles from users, roles, and program units

‒ Revoke object privileges for a particular object from users and roles

Oracle Database 23c: Administration Workshop 19 - 23

System privileges that have been granted directly with a GRANT command can be revoked by using the

REVOKE command in SQL*Plus. Users with the ADMIN OPTION for a system privilege can revoke the

privilege from any other database user. The revoker does not have to be the same user who originally

granted the privilege.

There are no cascading effects when a system privilege is revoked, regardless of whether it is given the

ADMIN OPTION.

The SQL syntax for revoking system privileges is:

SQL> REVOKE <system_privilege> FROM <grantee clause>

The diagram in the slide illustrates the following events:

1. The DBA grants the CREATE TABLE system privilege to the user Joe with ADMIN OPTION.

2. Joe creates a table.

3. Joe grants the CREATE TABLE system privilege to the user Emily.

4. Emily creates a table.

5. The DBA revokes the CREATE TABLE system privilege from Joe.

6. The result is that Joe’s table still exists and he can still access it, but he can't create new tables.

Emily’s table still exists, and she still has the CREATE TABLE system privilege.

Granting and Revoking System Privileges

Oracle Database 23c: Administration Workshop 19 - 24

Cascading effects can be observed when revoking a system privilege that is related to a data

manipulation language (DML) operation. For example, if the SELECT ANY TABLE privilege is granted to a

user, and if that user has created procedures that use the table, all procedures that are contained in the

user’s schema must be recompiled before they can be used again.

Revoking object privileges also cascades when given with GRANT OPTION. As a user, you can revoke only

those privileges that you have granted. For example, Bob cannot revoke the object privilege that Joe

granted Emily. Only the grantee or a user with the privilege called GRANT ANY OBJECT PRIVILEGE can

revoke object privileges.

The diagram in the slide illustrates object privileges being revoked. Assume that the following events

occur:

1. A DBA grants Joe the SELECT object privilege on the EMPLOYEES table with the GRANT OPTION.

2. Joe grants the SELECT privilege on the EMPLOYEES table to Emily.

3. The DBA revokes the SELECT privilege from Joe.

4. The result is that the revoke takes away Joe's ability to access the EMPLOYEES table, and the

revoke is cascaded to Emily as well.

Granting and Revoking Object Privileges

Oracle Database 23c: Administration Workshop 19 - 25

Summary

Create roles

Revoke privileges and roles from users and other roles

Grant system, schema, and object privileges to database users,
commonly and locally

Grant roles to users and other roles, commonly and locally

Oracle Database 23c: Administration Workshop 19 - 26

Configuring User Resource Limits

Objectives

Use Oracle-supplied password functions in profiles

Create and assign profiles to:

• Control resource consumption

• Manage account status and password expiration

Oracle Database 23c: Administration Workshop 20 - 2

Profiles and Users

• Users are assigned only one profile at a time.

• Profiles:

‒ Control resource consumption

‒ Manage account status and password expiration

• RESOURCE_LIMIT must be set to TRUE (default) for profiles to impose resource
limitations.

Profiles impose a named set of resource limits on database usage and instance resources. Profiles also

manage the account status and place limitations on users’ passwords (length, expiration time, and so on).

Every user is assigned a profile and may belong to only one profile at any given time. If users have

already logged in when you change their profile, the change does not take effect until their next login.

The DEFAULT profile serves as the basis for all other profiles. Limitations for a profile can be implicitly

specified (as in CPU/Session), can be unlimited (as in CPU/Call), or can reference whatever setting is in

the DEFAULT profile (as in Connect Time).

Profiles cannot impose resource limitations on users unless the RESOURCE_LIMIT initialization

parameter is set to TRUE, which is the default value. Profile password settings are always enforced.

Oracle Database 23c: Administration Workshop 20 - 3

Creating Profiles in a Multitenant Architecture

• Common profile: Replicated in all current and future containers

• Local profile: Created in a single PDB and used within that PDB only

SQL> CREATE PROFILE c##cprofile_dev

2 limit … CONTAINER=ALL;

SQL> CREATE PROFILE lprofile_PDB1

2 limit … ;

In a multitenant environment, you can create two types of profiles:

• Common profile: The profile is replicated in all current and future containers. To create a

common profile by using SQL*Plus, log in to the root container or an application root container

and issue the CREATE PROFILE command with the CONTAINER=ALL clause.

• Local profile: The profile is created in a single PDB and can be used within that PDB only. To

create a local profile by using SQL*Plus, log in to the PDB and issue the CREATE PROFILE

command without the CONTAINER=ALL clause.

In Enterprise Manager Database Express, you cannot drop a profile that is used by users. However, if you

drop a profile with the CASCADE option (for example, in SQL*Plus), all users who have that profile are

automatically assigned the DEFAULT profile.

If users have already logged in when you change their profile, the change does not take effect until their

next login.

Oracle Database 23c: Administration Workshop 20 - 4

Creating Profiles: Example

In the diagram in the slide, the common profile named c##cprofile_dev is created commonly at the

CDB level. The CREATE operation is replicated in all containers, including the root container where it was

initially created. Consequently, the same profile c##cprofile_dev is created in PDB1. The profile

named lprofile_PDB1 is created locally in PDB1 and exists only in PDB1.

Oracle Database 23c: Administration Workshop 20 - 5

Profile Parameters: Resources

• In a profile, you can control:

‒ CPU resources

– May be limited to a per-session or per-call basis

‒ Network and memory resources

– Connect time, Idle time, Concurrent sessions, Private SGA

‒ Disk I/O resources:

– Limit the amount of data a user can read

– per-session level or per-call level.

CPU Resources

CPU resources may be limited on a per-session or per-call basis. A CPU/Session limitation of 1,000 means

that if any individual session that uses this profile consumes more than 10 seconds of CPU time (CPU time

limitations are in hundredths of a second), that session receives the following error message and is

logged off:

ORA-02392: exceeded session limit on CPU usage, you are being logged off.

A per-call limitation does the same thing, but instead of limiting the user’s overall session, it prevents any

single command from consuming too much CPU. If CPU/Call is limited and the user exceeds the

limitation, the command aborts. The user receives an error message, such as:

ORA-02393: exceeded call limit on CPU usage.

Network and Memory Resources

Each database session consumes system memory resources and (if the session is from a user who is not

local to the server) network resources. You can specify the following:

• Connect Time: Indicates for how many minutes a user can be connected before being

automatically logged off

• Idle Time: Indicates for how many minutes a user’s session can remain idle before being

automatically logged off. Idle time is calculated for the server process only. It does not take into

account application activity. The IDLE_TIME limit is not affected by long-running queries and

other operations.

Oracle Database 23c: Administration Workshop 20 - 6

• Concurrent Sessions: Indicates how many concurrent sessions can be created by using a

database user account

• Private SGA: Limits the amount of space consumed in the System Global Area (SGA) for sorting,

merging bitmaps, and so on. This restriction takes effect only if the session uses a shared server

configuration.

Disk I/O Resources

Disk I/O resources limit the amount of data a user can read at the per-session level or per-call level.

Reads/Session and Reads/Call place a limitation on the total number of reads from both memory and the

disk. This can be done to ensure that no I/O-intensive statements overuse memory and disks.

Oracle Database 23c: Administration Workshop 20 - 7

Profile Parameters: Resources

• Profiles cannot

‒ Impose resource limitations on users

– Unless the RESOURCE_LIMIT initialization parameter is set to TRUE.

‒ RESOURCE_LIMIT default is FALSE

– Profile resource limitations are ignored.

• Profiles also allow composite limits

‒ Based on weighted combinations

– CPU/session, reads/session, connect time, and private SGA.

CPU Resources

CPU resources may be limited on a per-session or per-call basis. A CPU/Session limitation of 1,000 means

that if any individual session that uses this profile consumes more than 10 seconds of CPU time (CPU time

limitations are in hundredths of a second), that session receives the following error message and is

logged off:

ORA-02392: exceeded session limit on CPU usage, you are being logged off.

A per-call limitation does the same thing, but instead of limiting the user’s overall session, it prevents any

single command from consuming too much CPU. If CPU/Call is limited and the user exceeds the

limitation, the command aborts. The user receives an error message, such as:

ORA-02393: exceeded call limit on CPU usage.

Network and Memory Resources

Each database session consumes system memory resources and (if the session is from a user who is not

local to the server) network resources. You can specify the following:

• Connect Time: Indicates for how many minutes a user can be connected before being

automatically logged off

• Idle Time: Indicates for how many minutes a user’s session can remain idle before being

automatically logged off. Idle time is calculated for the server process only. It does not take into

account application activity. The IDLE_TIME limit is not affected by long-running queries and

other operations.

Oracle Database 23c: Administration Workshop 20 - 8

Profile Parameters: Locking and Passwords

• In a profile, specific parameters control

‒ Account locking

‒ Password aging

‒ Expiration

‒ Password history.

• Profile password settings are always enforced.

• Account locking enables automatic locking of accounts for a set duration when

‒ Specified number of failed logon attempts

‒ Account inactivity for a predefined number of days

Account Locking

Account locking enables automatic locking of accounts for a set duration when users fail to log in to the

system in the specified number of attempts or when accounts sit inactive for a predefined number of

days (users have not attempted to log in to their accounts). Configure the following profile parameters:

• FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts before the lockout of

the account.

• PASSWORD_LOCK_TIME specifies the number of days for which the account is locked after the

specified number of failed login attempts.

• INACTIVE_ACCOUNT_TIME specifies the number of days an account can be inactive before it is

locked.

Oracle Database 23c: Administration Workshop 20 - 9

Password History

Password history checks the new password to ensure that the password is not reused for a specified

amount of time or a specified number of password changes. Configure one of the following parameters:

• PASSWORD_REUSE_TIME specifies that a user cannot reuse a password for a given number of

days.

• PASSWORD_REUSE_MAX specifies the number of password changes that are required before the

current password can be reused.

• PASSWORD_VERIFY_FUNCTION checks for password complexity for the SYS user.

Recall that the values of the profile parameters are either set or inherited from the DEFAULT profile.

If both password history parameters have a value of UNLIMITED, Oracle Database ignores both. The user

can reuse any password at any time, which is not a good security practice. If both parameters are set,

password reuse is allowed, but only after meeting both conditions. The user must have changed the

password the specified number of times, and the specified number of days must have passed since the

old password was last used. For example, the profile of user ALFRED has PASSWORD_REUSE_MAX set to

10 and PASSWORD_REUSE_TIME set to 30. This means user ALFRED cannot reuse a password until he

has reset the password 10 times and until 30 days have passed since the password was last used. If one

parameter is set to a number and the other parameter is specified as UNLIMITED, then the user can never

reuse a password.

Oracle Database 23c: Administration Workshop 20 - 10

Profile Parameters: Locking and Passwords

• Password aging and expiration enables user passwords

‒ A lifetime for remaining valid after password expiration

– Must be changed after Lifetime has expired

• Password history checks ensures

‒ New password is not reused

– For a specified amount of time

– Or for a specified number of password changes

• Password complexity verification

‒ Verifies passwords meet defined rules

Password Aging and Expiration

Password aging and expiration enables user passwords to have a lifetime, after which the passwords

expire and must be changed. Configure the following profile parameters:

• PASSWORD_LIFE_TIME determines the lifetime of the password in days, after which the password

expires.

• PASSWORD_GRACE_TIME specifies a grace period in days for changing the password after the first

successful login after the password has expired.

Expiring passwords and locking the SYS, SYSMAN, and DBSNMP accounts prevent Enterprise Manager

from functioning properly. The applications must catch the “password expired” warning message and

handle the password change; otherwise, the grace period expires and the user is locked out without

knowing the reason.

Password Complexity Verification

Password complexity verification makes a complexity check on the password to verify that it meets

certain rules. The check must ensure that the password is complex enough to provide protection against

intruders who may try to break into the system by guessing the password.

The PASSWORD_VERIFY_FUNCTION parameter names a PL/SQL function that performs a password

complexity check before a password is assigned. Password verification functions must be owned by the

SYS user and return a Boolean value (TRUE or FALSE). A model password verification function is provided

in the utlpwdmg.sql script found in the following directories:

• UNIX and Linux platforms: $ORACLE_HOME/rdbms/admin

• Windows platforms: %ORACLE_HOME%\rdbms\admin

Oracle Database 23c: Administration Workshop 20 - 11

Oracle-Supplied Password Verification Functions

• Complexity verification checks that each password is complex enough to provide

reasonable protection against intruders who try to break into the system by

guessing passwords.

• You can create your own password verification functions.

• Oracle Database provides the following functions by default:

‒ ORA12c_VERIFY_FUNCTION

‒ ORA12c_STRONG_VERIFY_FUNCTION

‒ ORA12c_STIG_VERIFY_FUNCTION

• Password complexity checking is not enforced for the SYS user.

Complexity Verification

Complexity verification checks that each password is complex enough to provide reasonable protection

against intruders who try to break into the system by guessing passwords. Using a complexity verification

function forces users to create strong, secure passwords for database user accounts. You must ensure

that the passwords for your users are complex enough to provide reasonable protection against intruders

who try to break into the system by guessing passwords.

Oracle-Supplied Functions

You can create your own password verification functions; however, Oracle Database provides the

following functions by default:

• ORA12c_VERIFY_FUNCTION: This function performs the minimum complexity checks such as

checking for a minimum password length and that the password is not the same as the username.

• ORA12c_STRONG_VERIFY_FUNCTION: This function provides a stronger password complexity

function that takes into consideration recommendations from the US Department of Defense

Database Security Technical Implementation Guide.

• ORA12c_STIG_VERIFY_FUNCTION: This function fulfills the requirements of the Security

Technical Implementation Guides (STIG) and is the default handler for the ORA_STIG_PROFILE

profile.

Oracle Database 23c: Administration Workshop 20 - 12

Assigning Profiles in a Multitenant Architecture

• Commonly: The profile assignment is replicated in all current and future containers.

• Locally: The profile assignment occurs in one PDB (stand-alone or application

container) only.

SQL> CONNECT SYS@PDB1 AS SYSDBA

SQL> ALTER USER <common or local user> PROFILE <common or local profile>;

SQL> CONNECT / AS SYSDBA

SQL> ALTER USER <common user> PROFILE <common profile> CONTAINER=ALL;

There are two ways to assign a profile to a user:

• Commonly: The profile assignment is replicated in all current and future containers. The user

must be a common user and the profile must be a common profile. Do this if the user needs the

same profile in all containers. To assign a profile commonly, log in to the root container and issue

the ALTER USER command with the PROFILE and CONTAINER=ALL clauses.

• Locally: The profile assignment occurs in one PDB (stand-alone or application container) only.

The user can be common or local, and the profile can be common or local. To assign a profile

locally, log in to the PDB where the user exists and issue the ALTER USER command with the

PROFILE clause. Exclude the CONTAINER=ALL clause.

Oracle Database 23c: Administration Workshop 20 - 13

Summary

Use Oracle-supplied password functions in profiles

Create and assign profiles to:

• Control resource consumption

• Manage account status and password expiration

Oracle Database 23c: Administration Workshop 20 - 14

Implementing Oracle Database Auditing

Objectives

Enable unified auditing

Maintain the audit trail

Describe DBA responsibilities for security and auditing

Create unified audit policies

Oracle Database 23c: Administration Workshop 21 - 2

Database Security

• A secure system ensures the confidentiality of the data that it contains. There are

several aspects of security:

‒ Restricting access to data and services

‒ Authenticating users

‒ Monitoring for suspicious activity

Oracle Database provides the industry’s best framework for a secure system. But for that framework to be

effective, the database administrator must follow best practices and continually monitor database activity.

Restricting Access to Data and Services

All users must not have access to all data. Depending on what is stored in your database, restricted access

can be mandated by business requirements, customer expectations, and (increasingly) legal restrictions.

Credit card information, health-care data, identity information, and so on must be protected from

unauthorized access. The Oracle Database server provides extremely fine-grained authorization controls

to limit database access. Restricting access must include applying the principle of least privilege.

Authenticating Users

To enforce access controls on sensitive data, the system must first know who is trying to access the data.

Compromised authentication can render all other security precautions useless. The most basic form of

user authentication is challenging users to provide something that they know, such as a password.

Ensuring that passwords follow simple rules can greatly increase the security of your system. Stronger

authentication methods include requiring users to provide something that they have, such as a token or

public key infrastructure (PKI) certificate. An even stronger form of authentication is to identify users

through a unique biometric characteristic such as a fingerprint, iris scan, bone structure patterns, and so

on. The Oracle Database server supports advanced authentication techniques (such as token-, biometric-,

and certificate-based identification) through the Oracle Advanced Security option. User accounts that are

not in use must be locked to prevent attempts to compromise authentication.

Oracle Database 23c: Administration Workshop 21 - 3

Monitoring for Suspicious Activity

Even authorized and authenticated users can sometimes compromise your system. Identifying unusual

database activity (such as an employee who suddenly begins querying large amounts of credit card

information, research results, or other sensitive information) can be the first step in detecting information

theft. The Oracle Database server provides a rich set of auditing tools to track user activity and identify

suspicious trends.

Oracle Database 23c: Administration Workshop 21 - 4

Monitoring for Compliance

• Monitoring or auditing must be an integral part of your security procedures.

• Review the following:

‒ Mandatory auditing

‒ Standard database auditing

‒ Value-based auditing

‒ Fine-grained auditing (FGA)

Auditing, which means capturing and storing information about what is happening in the system,

increases the amount of work the system must do. Auditing must be focused so that only events that are

of interest are captured. Properly focused auditing has minimal impact on system performance.

Improperly focused auditing can significantly affect performance.

• Mandatory auditing: All Oracle databases audit certain actions regardless of other audit options

or parameters. The reason for mandatory audit logs is that the database needs to record some

database activities, such as connections by privileged users.

• Standard database auditing: Select the objects and privileges that you want to audit and create

the appropriate audit policies.

• Value-based auditing: Extend standard database auditing, capturing not only the audited event

that occurred but also the actual values that were inserted, updated, or deleted. Value-based

auditing is implemented through database triggers.

• Fine-grained auditing (FGA): Extend standard database auditing, capturing the actual SQL

statement that was issued rather than only the fact that the event occurred.

Oracle Database 23c: Administration Workshop 21 - 5

Types of Activities to be Audited

• You can audit the following types of activities:

‒ User accounts, roles, and privileges

‒ Object actions

‒ Application context values

‒ Oracle Data Pump

‒ Oracle Database Real Application Security

‒ Oracle Database Vault

‒ Oracle Label Security

‒ Oracle Recovery Manager

‒ Oracle SQL*Loader direct path events

Through the use of auditing policies, you can configure audit settings for the following activities:

• Logging on to the database and using privileges and roles

• Executing SQL statements against specific database objects

• Application context values

• Utilities and features:

– Oracle Data Pump

– Oracle Database Real Application Security

– Oracle Database Vault

– Oracle Label Security

– Oracle Recovery Manager

– Oracle SQL*Loader Direct Load

Oracle Database 23c: Administration Workshop 21 - 6

Mandatorily Audited Activities

• The following activities are audited:

‒ CREATE/ALTER/DROP AUDIT POLICY

‒ AUDIT/NOAUDIT

‒ EXECUTE of:

– DBMS_FGA

– DBMS_AUDIT_MGMT

‒ ALTER TABLE against AUDSYS audit trail table

‒ Top-level statements by administrative users (SYS, SYSDBA, SYSOPER, SYSASM,

SYSBACKUP, SYSDG, and SYSKM) until the database opens

The following audit-related activities are mandatorily audited:

• CREATE/ALTER/DROP AUDIT POLICY

• AUDIT/NOAUDIT

• EXECUTE of the DBMS_FGA PL/SQL package

• EXECUTE of the DBMS_AUDIT_MGMT PL/SQL package

• ALTER TABLE attempts on the AUDSYS audit trail table

• Top-level statements by SYS, SYSDBA, SYSOPER, SYSASM, SYSBACKUP, SYSDG, and SYSKM until

the database opens. After the database opens, these users are audited based on the defined audit

settings.

Oracle Database 23c: Administration Workshop 21 - 7

Understanding Auditing Implementation

• Mixed mode auditing is the default when a new database is created.

• Mixed mode auditing enables the use of:

‒ Pre-Oracle Database 12c auditing features

‒ Unified auditing features

• The recommendation from Oracle is to migrate to pure unified auditing.

• Query V$OPTION to determine if the database has been migrated to unified

auditing:

SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified Auditing';

PARAMETER VALUE

---------------- ----------

Unified Auditing TRUE

Prior to Oracle Database 12c, audit records from various sources were stored in different locations.

Unified auditing, in which all audit records are stored in a single audit table, was introduced in Oracle

Database 12c.

When you create a new database, mixed mode auditing is enabled. This mode enables you to use the

auditing features available before Oracle Database 12c and also the unified auditing features. Mixed mode

auditing is enabled by default through the ORA_SECURECONFIG predefined auditing policy for newly

created databases.

Note: Oracle recommends that you migrate to pure unified auditing. See the Oracle Database Upgrade

Guide for details.

Oracle Database 23c: Administration Workshop 21 - 8

Administering the Roles Required for Auditing

• A user must be granted one of the following roles to perform auditing:

‒ AUDIT_ADMIN enables the user to:

– Create unified and fine-grained audit policies

– Execute the AUDIT and NOAUDIT SQL statements

– View audit data

– Manage the audit trail (table in the AUDSYS schema)

‒ AUDIT_VIEWER enables the user to:

– View and analyze audit data

– Execute the DBMS_AUDIT_UTIL PL/SQL package

Users must be granted the appropriate privilege to configure auditing and view audit data. To support

separation of duty, two default roles are provided:

• AUDIT_ADMIN: Enables the grantee to configure auditing settings, create and administer audit

policies (unified and find-grained), and view and analyze audit data. This role is typically granted

to a security administrator.

• AUDIT_VIEWER: Enables the grantee to view and analyze audit data. This role is typically granted

to external auditors.

Oracle Database 23c: Administration Workshop 21 - 9

Database Auditing: Overview

Audit table

$ORACLE_

HOME
Configure
auditing

(audit policies).

Generates audit trail

Database

Audit
settings

Server
process

Verify that
unified auditing

is enabled.

Review audit
information.

Maintain
audit trail.

AUDIT_VIEWER

AUDIT_ADMIN

User executes
command.

1

2

3

4

Auditing is enabled by default. You can query V$OPTION to verify that unified auditing is enabled as

shown in this example:

SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified Auditing';

PARAMETER VALUE

---------------- ----------

Unified Auditing TRUE

Note: By default, unified auditing is not enabled for upgraded databases. If you have upgraded from a

release prior to Oracle Database 12c, your database uses the same auditing functionality that was used in

the earlier release. After you complete the migration to unified auditing, traditional auditing is disabled,

and the new audit records write to the unified audit trail. See the Oracle Database Upgrade Guide for

detailed information on migrating to unified auditing.

You must create and enable unified audit policies to specify which activities should be audited.

When a user executes a command or performs an activity that is defined in an auditing policy, audit

records are generated. The audit records are written to an internal relational table in the AUDSYS schema

and can be viewed by querying the UNIFIED_AUDIT_TRAIL view.

Maintaining the audit trail is an important administrative task. Depending on the focus of the audit

options, the audit trail can grow very large very quickly. If not properly maintained, the audit trail can

create so many records that it affects the performance of the system. Audit overhead is directly related to

the number of records that are produced.

Detailed information on all these steps is provided later in this lesson.

Oracle Database 23c: Administration Workshop 21 - 10

Configuring Auditing

Method Description

Unified audit policies Group audit settings into a policy

Predefined unified audit policies
Commonly used security-relevant audit
settings

Fine-grained audit policies
Define specific conditions that must be met for
auditing to take place

You can configure auditing by grouping audit settings into a unified audit policy.

Oracle Database includes predefined unified audit policies, which include commonly used security audit

settings. See Oracle Database Security Guide for a list of predefined audit policies.

Fine-grained audit policies enable you to define specific conditions that generate an audit record.

Additional information about these methods is provided later in the lesson.

Oracle Database 23c: Administration Workshop 21 - 11

Creating a Unified Audit Policy

• Use the CREATE AUDIT POLICY statement to create a unified audit policy:

• To simplify policy management, group related options into a single policy.

CREATE AUDIT POLICY select_emp_pol

ACTIONS select on hr.employees

Use the CREATE AUDIT POLICY statement to create a unified audit policy. The unified audit policy syntax

is designed so that you can create one policy that covers all the audit settings that your database needs. A

good practice is to group related options into a single policy instead of creating multiple small policies.

This enables you to manage the policies more easily.

The example in the slide shows how to create an audit policy named SELECT_EMP_POL. This policy

specifies that SELECT statements against the HR.EMPLOYEES table will be audited.

You can also create audit policies by using Enterprise Manager Cloud Control.

Oracle Database 23c: Administration Workshop 21 - 12

Creating an Audit Policy: Systemwide Audit Options

• System privileges:

• Actions:

• Roles:

• System privileges, actions, and roles:

CREATE AUDIT POLICY audit_syspriv_pol1

PRIVILEGES SELECT ANY TABLE, CREATE LIBRARY

CREATE AUDIT POLICY audit_actions_pol2

ACTIONS AUDIT, ALTER TRIGGER

CREATE AUDIT POLICY audit_role_pol3

ROLES mgr_role

CREATE AUDIT POLICY audit_mixed_pol4

PRIVILEGES DROP ANY TABLE

ACTIONS CREATE TABLE, DROP TABLE, TRUNCATE TABLE

ROLES emp_role

You can create an audit policy with systemwide or object-specific audit options.

The systemwide options can be of three types:

• The privilege audit option audits all events that exercise the specified system privilege, as in the

first example in the slide.

• The action audit option indicates which RDBMS action should be audited, such as the ALTER

TRIGGER action in the second example.

• The role audit option audits the use of all system or object privileges granted directly to the

MGR_ROLE role, as in the third example.

You can configure privilege, action, and role audit options together in the same audit policy, as shown in

the fourth example.

You can find a list of auditable systemwide options in the SYS.AUDITABLE_SYSTEM_ACTIONS table.

Oracle Database 23c: Administration Workshop 21 - 13

Creating an Audit Policy: Object-Specific Actions

• Create audit policies based on object-specific options.

CREATE AUDIT POLICY audit_objpriv_pol5

ACTIONS SELECT, UPDATE, LOCK ON hr.employees

CREATE AUDIT POLICY audit_objpriv_pol6

ACTIONS ALL

CREATE AUDIT POLICY audit_objpriv_pol7

ACTIONS EXECUTE, GRANT ON hr.raise_salary_proc

Object-specific options are the second type of audit options. These options are actions that are specific to

objects in the database.

The first example in the slide creates an audit policy to audit any select and update action on any object,

and any lock on the HR.EMPLOYEES table.

The second example creates an audit policy to audit any object-specific action on any object.

The third example creates an audit policy to audit any execute action on any procedural object, and any

grant on the HR.RAISE_SALARY_PROC procedure.

Object-level audit options are dynamic. That is, changes in these options become applicable for current

and subsequent user sessions.

Oracle Database 23c: Administration Workshop 21 - 14

Creating an Audit Policy: Specifying Conditions

• Condition and evaluation PER SESSION

• Condition and evaluation PER STATEMENT

• Condition and evaluation PER INSTANCE

CREATE AUDIT POLICY audit_mixed_pol5

ACTIONS RENAME ON hr.employees,ALTER ON hr.jobs,

WHEN 'SYS_CONTEXT (''USERENV'', ''SESSION_USER'')=''JIM'''

EVALUATE PER SESSION

CREATE AUDIT POLICY audit_objpriv_pol6

ACTIONS ALTER ON OE.ORDERS

WHEN 'SYS_CONTEXT(''USERENV'',''CLIENT_IDENTIFIER'')=''OE'''

EVALUATE PER STATEMENT

CREATE AUDIT POLICY audit_objpriv_pol7

ROLES dba

WHEN SYS_CONTEXT(''USERENV'',''INSTANCE_NAME'')=''sales'''

EVALUATE PER INSTANCE

Audit policies can evaluate the condition per statement, once per session or once per instance.

The first example in the slide creates an audit policy to audit any rename action on the HR.EMPLOYEES

table, and any alter action on the HR.JOBS table, provided that the user executing the audited statement

is JIM. The condition is evaluated only once in the session.

The second example creates an audit policy to audit any alter action on the OE.ORDERS table, provided

that the user executing the audited statement is the schema owner OE. The condition is evaluated each

time an ALTER statement is executed on the OE.ORDERS table.

The third example creates an audit policy to audit any privilege granted to the DBA role, provided that the

instance name is “sales.” The condition is evaluated only once during the database instance lifetime.

After Oracle Database evaluates the condition, it caches and reuses the result for the remainder of the

instance lifetime.

Oracle Database 23c: Administration Workshop 21 - 15

Enabling and Disabling Audit Policies

• Enable audit policies:

‒ Apply to all users.

‒ Apply only to some users.

‒ Exclude some users.

‒ Audit the recording based on failed or succeeded actions.

• Disable audit policies by using the NOAUDIT command.

AUDIT POLICY audit_syspriv_pol1;

AUDIT POLICY audit_pol2 BY scott, oe;

AUDIT POLICY audit_pol3 BY sys;

AUDIT POLICY audit_pol4 EXCEPT jim, george;

AUDIT POLICY audit_syspriv_pol1 WHENEVER SUCCESSFUL ;

AUDIT POLICY audit_objpriv_pol2 WHENEVER NOT SUCCESSFUL ;

AUDIT POLICY auditpol5 BY joe WHENEVER SUCCESSFUL ;

After creating the audit policy, you must enable it by using the AUDIT statement.

All users are audited by default, except if you define a list of those audited. Apply the audit policy to one

or more users by using the BY clause. The audit administrator audits SYS-user-specific actions the same

way as other user actions. Exclude some users by using the EXCEPT clause.

You cannot have a BY list and an EXCEPT list in the same policy enablement statement

Audit records are generated whether the user’s actions failed or succeeded. If you want to audit actions

only when the user’s actions failed, use the WHENEVER NOT SUCCESSFUL clause. If you want to audit

actions only when the user’s actions succeeded, use the WHENEVER SUCCESSFUL clause. When you omit

the WHENEVER clause, the statement is audited whether the action is successful or not, and the

RETURN_CODE column displays whether the action succeeded or not.

To disable an audit policy, use the NOAUDIT command.

Oracle Database 23c: Administration Workshop 21 - 16

Auditing Actions in the CDB and PDBs

1. Connect to the CDB root, to an application root, or

to a regular PDB.

2. Create common or local unified audit policies:

‒ For all PDBs (connect to CDB root)

‒ For all application PDBs of an application container

(connect to the application root)

‒ For a regular PDB or a specific application PDB

(connect to the PDB)

3. Enable/disable audit policies:

‒ Define users or users being granted roles to be

audited (DBA role).

‒ Use the AUDIT POLICY and NOAUDIT POLICY

commands.

CDB1

PDBC

CDB audit policies

PDB audit policies
pol_user_PDBC
jim: create user

lee: create user

Application container
audit policies

pol_user_APP
hr:create view

oe:create view

PDB_APP

APP1 APP2

pol_user_CDB
c##_kim:create user

c##_tom:create user

c##_ann:drop user

You can create a unified audit policy commonly at the CDB level for the whole CDB. If you create the

unified audit policy in the application root, it applies to all application PDBs that belong to the application

container. If you create the unified audit policy locally, it applies to the local container, whether it is an

application PDB or regular PDB.

The unified audit policy provides the ability to audit the system privileges used or actions performed in all

PDBs in the CDB. It also provides the ability to audit object privileges used on common objects by

application common users in all application PDBs. Auditing can be in an application container or

exclusively in a specific PDB.

Application common unified audit policies need NOT be explicitly synchronized in application PDBs with

the application root. An implicit application BEGIN-END block is added for application common unified

audit policies when the end user does not create them inside an explicit application BEGIN-END block. In

this case, the creation of application common unified audit policies does not require explicit application

BEGIN-END block statements. However, application common unified audit policies, when created within

an explicit application BEGIN statement, will require an explicit application END statement.

In the example in the slide, the POL_USER_CDB unified audit policy that is created in the CDB root audits

any CREATE or DROP USER statement that is performed by specific users (c##_kim, c##_tom, and

c##_ann).

The POL_USER_APP unified audit policy that is created in the PDB_APP application root audits any

CREATE VIEW operation performed by application common users (hr and oe).

The pol_user_PDBC unified audit policy that is created in the regular PDBC PDB audits any CREATE or

DROP USER performed by local users (jim, lee, and bob).

Oracle Database 23c: Administration Workshop 21 - 17

The audit records are generated in the container’s own audit trail, in the container where the action was

executed.

A local unified audit policy can be enabled on local and common roles and becomes effective for users to

whom the local or common role is granted directly. A common unified audit policy, alternatively, can be

enabled only on common roles and becomes effective only for common users to whom the common role

is granted. The clause used is BY USERS WITH GRANTED ROLES role_list.

A good example of using this capability is the predefined role called DBA, which contains most of the

system privileges, granted to special privileged users, which might be considered for auditing.

The audit-administrator does not have to enable the unified audit policies on all individual users explicitly.

Over a period of time, there could be new users with the DBA role granted. Some of the earlier DBA users

might no longer have the DBA role. The audit-administrator does not have to keep track of such changing

auditing requirements and enable the unified audit policies appropriately for a new set of DBA users.

Similarly, users who no longer have the DBA role granted will automatically be excluded from auditing

and, thus, avoid generating unnecessary audit records.

Oracle Database 23c: Administration Workshop 21 - 18

Modifying a Unified Audit Policy

• Enabled and disabled unified audit policies can be modified.

• Use the ALTER AUDIT POLICY statement to modify a unified audit policy:

ALTER AUDIT POLICY select_emp_pol

ADD ACTIONS select on hr.job_history

You can change most properties in a unified audit policy, except a CONTAINER setting. You can make

changes to enabled and disabled audit policies. You do not need to re-enable an audit policy after altering

it.

For an object unified audit policy, the new audit settings take place immediately after it has been altered,

for both the active and subsequent user sessions. If you alter system audit options, or audit conditions of

the policy, then they are activated for new user sessions but not the current user session.

Oracle Database 23c: Administration Workshop 21 - 19

Auditing Top-Level Statements Only

• Top-level statement unified auditing enables you to:

‒ Audit a top-level user or direct user activities in the database without collecting

indirect user activity

‒ Minimize audit records

SQL> CREATE AUDIT POLICY actions_all_pol ACTION ALL ONLY TOPLEVEL;

SQL> AUDIT POLICY actions_all_pol BY SYS;

SQL> CREATE AUDIT POLICY update_emp_pol ACTIONS UPDATE ON HR.EMPLOYEES ONLY TOPLEVEL;

SQL> AUDIT POLICY update_emp_pol;

SQL> CONNECT user1@PDB1

SQL> UPDATE hr.employees SET salary = salary * 0.1 WHERE empno = 100;

SQL> EXEC hr.salary_emp_raise (empno => 100, increase => '0.1')

Direct ➔ Audited

Not direct
➔ Not auditedX

You can audit only top-level user directly issued events, without the overhead of indirect SQL

statements. Top-level statements are SQL statements that users directly issue. These statements can be

important for both security and compliance. SQL statements run from within PL/SQL procedures or

functions are not considered top level because they may be less relevant for auditing purposes.

The CREATE AUDIT POLICY statement can include or exclude top-level statement audit records in the

unified audit trail for any user by using the ONLY TOPLEVEL clause.

The first example in the slide shows how to define an audit policy that captures all top-level statements

executed by the SYS user.

The second example shows how to limit the audit trail to top-level instances of the UPDATE statement on

the HR.EMPLOYEES table. When a user executes an UPDATE command on the HR.EMPLOYEES table, the

action is audited, whereas when the user executes the same command through a procedure, the action is

not audited.

Oracle Database 23c: Administration Workshop 21 - 20

Viewing Audit Policy Information

SQL> SELECT policy_name, audit_option, condition_eval_opt

2 FROM audit_unified_policies;

POLICY_NAME AUDIT_OPTION CONDITION_EVAL_OPT

-------------------- ---------------- ----------------

POL1 DELETE INSTANCE

POL2 TRUNCATE TABLE NONE

POL3 RENAME SESSION

POL4 ALL ACTIONS STATEMENT

SQL> SELECT policy_name, enabled_opt, user_name, success, failure

2 FROM audit_unified_enabled_policies;

POLICY_NAME ENABLED_ USER_NAME SUC FAI

-------------------- -------- ---------- --- ---

POL3 BY PM NO YES

POL2 EXCEPT SYSTEM NO YES

POL4 BY SYS YES

POL6 BY ALL USERS YES NO

Query AUDIT_UNIFIED_POLICIES to view a list of existing audit policies. The CONDITION_EVAL_OPT

column defines when the condition, if any, is evaluated.

Query AUDIT_UNIFIED_ENABLED_POLICIES to view a list of enabled audit policies. The ENABLED_OPT

column indicates whether a list of audited users is defined with the BY value or an exception list of

excluded users is defined with the EXCEPT value. The audited or excluded users are listed in the

USER_NAME column. The SUCCESS and FAILURE columns indicate whether the policy generates audit

records only when the user’s actions succeed or fail.

Oracle Database 23c: Administration Workshop 21 - 21

Value-Based Auditing

The user’s change
is made.

The trigger fires. An audit record is
created by the trigger.

The audit record is
inserted into an audit

trail table.

A user makes a
change.

Value-based auditing leverages database triggers (event-driven PL/SQL constructs) to capture changed

values in objects.

When a user inserts, updates, or deletes data from a table with the appropriate trigger attached, the

trigger works in the background to copy audit information to a table that is designed to contain the audit

information. Value-based auditing tends to degrade performance more than standard database auditing

because the audit trigger code must be executed each time the insert, update, or delete operation occurs.

The degree of degradation depends on the efficiency of the trigger code. Value-based auditing must be

used only in situations in which the information captured by standard database auditing is insufficient.

Value-based auditing is implemented by user or third-party code. The Oracle database provides the

PL/SQL constructs to allow value-based audit systems to be built.

Oracle Database 23c: Administration Workshop 21 - 22

The key to value-based auditing is the audit trigger, which is simply a PL/SQL trigger that is constructed

to capture audit information.

Example of a typical audit trigger:

CREATE OR REPLACE TRIGGER system.hrsalary_audit

AFTER UPDATE OF salary

ON hr.employees

REFERENCING NEW AS NEW OLD AS OLD

FOR EACH ROW

BEGIN

IF :old.salary != :new.salary THEN

INSERT INTO system.audit_employees

VALUES (sys_context('userenv','os_user'), sysdate,

sys_context('userenv','ip_address'),

:new.employee_id ||

' salary changed from '||:old.salary||

' to '||:new.salary);

END IF;

END;

/

This trigger focuses auditing on capturing changes to the salary column of the HR.EMPLOYEES table.

When a row is updated, the trigger checks the salary column. If the old salary is not equal to the new

salary, the trigger inserts an audit record into the AUDIT_EMPLOYEES table (created via a separate

operation in the SYSTEM schema). The audit record includes the username, the IP address from which the

change is made, the primary key identifying which record is changed, and the actual salary values that are

changed.

Database triggers can also be used to capture information about user connections in cases where

standard database auditing does not gather sufficient data. With login triggers, the administrator can

capture data that identifies the user who is connecting to the database. Examples include the following:

• IP address of the person logging in

• First 48 characters of the program name that is used to connect to the instance

• Terminal name that is used to connect to the instance

For a complete list of user parameters, see the section titled “SYS_CONTEXT” in the Oracle Database SQL

Reference.

Value-based triggers have been superseded in many cases by the fine-grained auditing (FGA) feature.

Oracle Database 23c: Administration Workshop 21 - 23

Fine-Grained Auditing

• Monitors data access on the basis of content

• Audits SELECT, INSERT, UPDATE, DELETE, and MERGE

• Can be linked to one or more columns in a table or view

• May execute a procedure

• Is administered with the DBMS_FGA package

EMPLOYEES

Policy: AUDIT_EMPS_SALARY

SELECT name, salary

FROM employees

WHERE

department_id = 10;

Database auditing records the fact that an operation has occurred but does not capture information

about the statement that caused the operation. Fine-grained auditing (FGA) extends that capability to

enable the capture of actual SQL statements that query or manipulate data.

FGA also allows auditing to be more narrowly focused than standard or value-based database auditing.

FGA options can be focused by individual columns in a table or view, and can even be conditional so that

audits are captured only if certain administrator-defined specifications are met. More than one relevant

column is supported for an FGA policy. By default, if any one of these columns is present in the SQL

statement, it is audited. DBMS_FGA.ALL_COLUMNS and DBMS_FGA.ANY_COLUMNS are provided to audit

on the basis of whether any or all of the relevant columns are used in the statement.

Use the DBMS_FGA PL/SQL package to create an audit policy on the target table or view. If any of the rows

returned from a query block match the audited column and the specified audit condition, an audit event

causes an audit record to be created and stored in the audit trail. As an option, the audit event can also

execute a procedure. FGA automatically focuses auditing at the statement level. A SELECT statement that

returns thousands of rows thus generates only one audit record.

Oracle Database 23c: Administration Workshop 21 - 24

FGA Policy

• Defines:

‒ Audit criteria

‒ Audit action

• Is created with

DBMS_FGA.ADD_POLICY

dbms_fga.add_policy (

object_schema => 'HR',

object_name => 'EMPLOYEES',

policy_name => 'audit_emps_salary',

audit_condition=> 'department_id=10',

audit_column => 'SALARY,COMMISSION_PCT',

handler_schema => 'secure',

handler_module => 'log_emps_salary',

enable => TRUE,

statement_types => 'SELECT,UPDATE');

SELECT name, job_id

FROM employees

WHERE

department_id = 20;

SELECT name, salary

FROM employees

WHERE

department_id = 10;

SECURE.LOG_EMPS_SALARY

EMPLOYEES

Not audited

The example in the slide shows the creation of a fine-grained auditing policy with the

DBMS_FGA.ADD_POLICY procedure, which accepts the following arguments:

• Policy Name: You assign each FGA policy a name when you create it. The example in the slide

names the policy AUDIT_EMPS_SALARY by using the following argument:

policy_name => 'audit_emps_salary'

• Audit Condition: The audit condition is a SQL predicate that defines when the audit event must

fire. In the example in the slide, all rows in department 10 are audited by using the following

condition argument:

audit_condition => 'department_id = 10'

Note: Fine-grained auditing looks at the result set of the query, so with the FGA policy shown in

the slide, queries that return rows matching the policy specifications will cause an audit record to

be created. For example, in the query "select * from employees", all rows including those

having “10” in DEPARTMENT_ID may be returned, so an audit row is created.

• Audit Column: The audit column defines the data that is being audited. An audit event occurs if

this column is included in the SELECT statement or if the audit condition allows the selection. The

example in the slide audits two columns by using the following argument:

audit_column => 'SALARY,COMMISION_PCT'

This argument is optional. If it is not specified, only the AUDIT_CONDITION argument determines

whether an audit event must occur.

Oracle Database 23c: Administration Workshop 21 - 25

• Object: The object is the table or view that is being audited. It is passed as two arguments:

– The schema that contains the object

– The name of the object

The example in the slide audits the hr.employees table by using the following arguments:

object_schema => 'hr'

object_name => 'employees'

• Handler: An optional event handler is a PL/SQL procedure that defines additional actions that

must be taken during auditing. For example, the event handler can send an alert page to the

administrator. If it is not defined, an audit event entry is inserted into the audit trail. If an audit

event handler is defined, the audit entry is inserted into the audit trail and the audit event handler

is executed.

The audit event entry includes the FGA policy that caused the event, the user executing the SQL

statement, and the SQL statement and its bind variables.

The event handler is passed as two arguments:

– The schema that contains the PL/SQL program unit

– The name of the PL/SQL program unit

The example in the slide executes the SECURE.LOG_EMPS_SALARY procedure by using the

following arguments:

handler_schema => 'secure'

handler_module => 'log_emps_salary'

By default, the audit trail always writes the SQL text and SQL bind information to LOBs. The

default can be changed (for example, if the system would suffer performance degradation).

• Status: The status indicates whether the FGA policy is enabled. In the example in the slide, the

following argument enables the policy:

enable => TRUE

Oracle Database 23c: Administration Workshop 21 - 26

Audited DML Statements: Considerations

• Records are audited if the FGA predicate is satisfied and the relevant columns are

referenced.

• DELETE statements are audited regardless of columns specified.

• MERGE statements are audited with the underlying INSERT, UPDATE, and DELETE

generated statements.

UPDATE hr.employees

SET salary = 1000

WHERE commission_pct = .2;

UPDATE hr.employees

SET salary = 1000

WHERE employee_id = 200;

Not audited because
none of the employees

are in department 10

Audited because the
employee is in
department 10

With an FGA policy defined for DML statements, a DML statement is audited if the data rows (both new

and old) that are being manipulated meet the policy predicate criteria.

However, if relevant columns are also specified in the policy definition, the statement is audited when the

data meets the FGA policy predicate and the statement references the relevant columns defined.

For DELETE statements, specifying relevant columns during policy definition is not useful because all

columns in a table are touched by a DELETE statement. Therefore, a DELETE statement is always audited

regardless of the relevant columns.

MERGE statements are supported by FGA. The underlying INSERT, UPDATE, and DELETE statements are

audited if they meet the defined INSERT, UPDATE, or DELETE FGA policies.

Using the previously defined FGA policy, the first statement is not audited whereas the second one is.

None of the employees in department 10 receive a commission, but EMPLOYEE_ID=200 specifies an

employee in department 10.

Oracle Database 23c: Administration Workshop 21 - 27

FGA Guidelines

• To audit all rows, use a null audit condition.

• To audit all columns, use a null audit column.

• Policy names must be unique.

• The audited table or view must already exist when you create the policy.

• If the audit condition syntax is invalid, an ORA-28112 error is raised when the

audited object is accessed.

• If the audited column does not exist in the table, no rows are audited.

• If the event handler does not exist, no error is returned and the audit record is still

created.

For SELECT statements, FGA captures the statement itself and not the actual rows. However, when FGA is

combined with Flashback Query, the rows can be reconstructed as they existed at that point in time.

For more details about the DBMS_FGA package, see the Oracle Database PL/SQL Packages and Types

Reference.

Oracle Database 23c: Administration Workshop 21 - 28

Archiving and Purging the Audit Trail

• Periodically archive and purge the audit trail to prevent it from growing too large.

• Create an archive by:

‒ Copying audit trail records to a database table

‒ Using Oracle Audit Vault and Database Firewall

• Purge the audit trail by:

‒ Creating and scheduling a purge job to run at a specified time by using the

DBMS_AUDIT_MGMT.CREATE_PURGE_JOB PL/SQL procedure

‒ Manually using the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL PL/SQL procedure

Basic maintenance of the audit trail includes reviewing audit records and removing older records. The

audit trail can grow to fill the available storage if not reviewed periodically and archived and purged. If the

database audit trail fills the tablespace, audited actions do not complete.

Oracle Database 23c: Administration Workshop 21 - 29

Purging Audit Trail Records

• Schedule an automatic purge job:

• Manually purge the audit records:

DBMS_AUDIT_MGMT.CREATE_PURGE_JOB

(AUDIT_TRAIL_TYPE=> DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,

AUDIT_TRAIL_PURGE_INTERVAL => 12,

AUDIT_TRAIL_PURGE_NAME => 'Audit_Trail_PJ',

USE_LAST_ARCH_TIMESTAMP => TRUE,

CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_CURRENT);

DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(

AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED)

To perform audit trail purge tasks, you use the DBMS_AUDIT_MGMT package. You must have the

AUDIT_ADMIN role to use the package. By mandate, Oracle Database audits all executions of

DBMS_AUDIT_MGMT package procedures.

The DBMS_AUDIT_MGMT.CREATE_PURGE_JOB procedure includes the CONTAINER attribute. Setting

CONTAINER to CONTAINER_CURRENT deletes audit trail records for the current pluggable database.

Setting CONTAINER to CONTAINER_ALL deletes audit trail records for all pluggable databases, creating a

job in the root, and the invocation of this job will invoke cleanup in all the PDBs.

USE_LAST_ARCH_TIMESTAMP specifies whether the last archived time stamp should be used for

determining the records that should be deleted. Setting USE_LAST_ARCH_TIMESTAMP to TRUE indicates

that only audit records created before the last archive time stamp should be deleted. A value of FALSE

indicates that all audit records should be deleted. The default value is TRUE. Oracle recommends using

this value because it helps guard against inadvertent deletion of records.

You can automate the cleanup process by creating and scheduling a cleanup purge job, or you can

manually run a cleanup purge job. If you manually run cleanup purge jobs, use the

DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure with a new type value of

DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED.

Oracle Database 23c: Administration Workshop 21 - 30

Summary

Enable unified auditing

Maintain the audit trail

Describe DBA responsibilities for security and auditing

Create unified audit policies

Oracle Database 23c: Administration Workshop 21 - 31

Introduction to Loading and
Transporting Data

Objectives

Explain the general architecture of Oracle Data Pump and SQL*Loader

Describe ways to move data

Oracle Database 23c: Administration Workshop 22 - 2

Major functional components include:

• DBMS_DATAPUMP: It contains the API for high-speed export and import utilities for bulk data and

metadata movement.

• Direct Path API (DPAPI): Oracle Database supports a Direct Path API interface that minimizes data

conversion and parsing at both unload and load time.

• DBMS_METADATA: Used by worker processes for all metadata unloading and loading. Database

object definitions are stored by using XML rather than SQL.

• External Table: With the ORACLE_DATAPUMP and ORACLE_LOADER access drivers, you can store

data in external tables (that is, in platform-independent files). The SELECT statement reads

external tables as though they were stored in an Oracle database.

• SQL*Loader: It has been integrated with external tables, providing automatic migration of loader

control files to external table access parameters.

• expdp and impdp: They are thin layers that make calls to the DBMS_DATAPUMP package to initiate

and monitor Data Pump operations.

• Other clients: Applications (such as replication, transportable tablespaces, and user applications)

that benefit from this infrastructure. SQL*Plus may also be used as a client of DBMS_DATAPUMP for

simple status queries against ongoing operations.

Moving Data: General Architecture

Oracle Database 23c: Administration Workshop 22 - 3

Oracle Data Pump enables very high-speed data and metadata loading and unloading of Oracle

databases. The Data Pump infrastructure is callable via the DBMS_DATAPUMP PL/SQL package. Thus,

custom data movement utilities can be built by using Data Pump.

Oracle Database provides the following tools:

• Command-line export and import clients called expdp and impdp, respectively

• An export and import interface in Enterprise Manager Cloud Control

Data Pump automatically decides the data access methods to use; these can be either direct path or

external tables. Data Pump uses direct path load and unload when a table’s structure allows it and when

maximum single-stream performance is desired. However, if there are clustered tables, encrypted

columns, or several other items, Data Pump uses external tables rather than direct path to move the data.

Conventional Path Load is used when Data Pump is not able to load data into a table by using either

direct path or external tables. The ability to detach from and reattach to long-running jobs without

affecting the job itself enables you to monitor jobs from multiple locations while they are running. All

stopped Data Pump jobs can be restarted without loss of data as long as the metadata remains

undisturbed. It does not matter whether the job is stopped voluntarily or involuntarily due to a crash.

Oracle Data Pump: Overview

• As a server-based facility for high-speed data and metadata movement, Oracle Data Pump:

‒ Can be called via DBMS_DATAPUMP

‒ Provides the following tools:

– expdp and impdp

– GUI interface in Enterprise Manager Cloud Control

‒ Provides several data movement methods:

– Conventional path load

– Direct path

– External tables

– Transportable tablespace

– Network link support

‒ Detaches from and reattaches to long-running jobs

‒ Restarts Data Pump jobs

Oracle Database 23c: Administration Workshop 22 - 4

The EXCLUDE, INCLUDE, and CONTENT parameters are used for fine-grained object and data selection.

You can specify the database version for objects to be moved (using the VERSION parameter) to create a

dump file set that is compatible with a previous release of Oracle Database that supports Data Pump.

You can use the PARALLEL parameter to specify the maximum number of threads of active execution

servers operating on behalf of the export job.

Network mode enables you to export from a remote database directly to a dump file set. This can be done

by using a database link to the source system.

During import, you can change the target data file names, schemas, and tablespaces:

• Rename tables during an import operation.

• Remap data as it is being imported into a new database.

Oracle Data Pump: Benefits

• Data Pump offers many benefits and features, such as:

‒ Fine-grained object and data selection

‒ Explicit specification of database version

‒ Parallel execution

‒ Network mode in a distributed environment

‒ Remapping capabilities

Oracle Database 23c: Administration Workshop 22 - 5

In addition, you can specify a percentage of data to be sampled and unloaded from the source database

when performing a Data Pump export. This can be done by specifying the SAMPLE parameter.

You can use the COMPRESSION parameter to indicate whether the metadata should be compressed in the

export dump file so that it consumes less disk space. If you compress the metadata, it is automatically

uncompressed during import. You can choose to compress both data and metadata, only data, only

metadata, or no data during an export. This feature requires the Oracle Advanced Compression option.

You can also specify encryption options to encrypt. Encryption requires the Oracle Advanced Security

option:

• Both data and metadata, only data, only metadata, no data, or only encrypted columns during an

export

• A particular encryption algorithm to use during an export

• The type of security to use for performing encryption and decryption during an export. For

example, perhaps the dump file set will be imported into a different or remote database and must

remain secure in transit. Or perhaps the dump file set will be imported on-site using the Oracle

Encryption Wallet, but it may also need to be imported off-site where the Oracle Encryption Wallet

is not available.

You can also define that XMLType columns are to be exported in uncompressed CLOB format regardless

of the XMLType storage format that was defined for them.

Oracle Data Pump: Benefits

• Data Pump offers many benefits and features, such as:

‒ Data sampling and metadata compression

‒ Compression of data during a Data Pump export

‒ Security through encryption

‒ Ability to export XMLType data as CLOBs

Oracle Database 23c: Administration Workshop 22 - 6

SQL*Loader loads data from external files into the tables of an Oracle database. It has a powerful data

parsing engine that puts little limitation on the format of the data in the data file.

SQL*Loader uses the following files:

Input data files: SQL*Loader reads data from one or more files (or operating system equivalents of files)

that are specified in the control file. From SQL*Loader’s perspective, the data in the data file is organized

as records. A particular data file can be in fixed record format, variable record format, or stream record

format. The record format can be specified in the control file with the INFILE parameter. If no record

format is specified, the default is stream record format.

Control file: The control file is a text file that is written in a language that SQL*Loader understands. The

control file indicates to SQL*Loader where to find the data, how to parse and interpret the data, where to

insert the data, and so on. Although not precisely defined, a control file can be said to have three sections.

• The first section contains such sessionwide information as:

– Global options, such as the input data file name and records to be skipped

– INFILE clauses to specify where the input data is located

– Data to be loaded

• The second section consists of one or more INTO TABLE blocks. Each of these blocks contains

information about the table (such as the table name and the columns of the table) into which the

data is to be loaded.

• The third section is optional and, if present, contains input data.

SQL Loader: Overview

Oracle Database 23c: Administration Workshop 22 - 7

Log file: When SQL*Loader begins execution, it creates a log file. If it cannot create a log file, execution

terminates. The log file contains a detailed summary of the load, including a description of any errors that

occurred during the load.

Discard file: This file is created only when it is needed and only if you have specified that a discard file

should be enabled. The discard file contains records that are filtered out of the load because they do not

match any record-selection criteria specified in the control file.

Bad file: The bad file contains records that are rejected, either by SQL*Loader or by the Oracle database.

Data file records are rejected by SQL*Loader when the input format is invalid. After a data file record is

accepted for processing by SQL*Loader, it is sent to the Oracle database for insertion into a table as a

row. If the Oracle database determines that the row is valid, the row is inserted into the table. If the row is

determined to be invalid, the record is rejected, and SQL*Loader puts it in the bad file.

Oracle Database 23c: Administration Workshop 22 - 8

Summary

Explain the general architecture of Oracle Data Pump and SQL*Loader

Describe ways to move data

Oracle Database 23c: Administration Workshop 22 - 9

Loading Data

Objectives

Use SQL*Loader to load data from a non-Oracle database (or user files)

Oracle Database 23c: Administration Workshop 23 - 2

SQL*Loader uses the following files:

• Input data files: SQL*Loader reads data from one or more files (or operating system equivalents

of files) that are specified in the control file.

• Control file: The control file is a text file that is written in a language that SQL*Loader

understands.

• Log file: The log file contains a detailed summary of the load, including a description of any errors

that occurred during the load.

• Discard file: The discard file contains records that are filtered out of the load because they do not

match any record-selection criteria specified in the control file.

• Bad file: The bad file contains records that are rejected, either by SQL*Loader or by the Oracle

database server.

SQL Loader: Review

Oracle Database 23c: Administration Workshop 23 - 3

The SQL*Loader control file is a text file that contains data definition language (DDL) instructions. DDL is

used to control the following aspects of a SQL*Loader session:

• Where SQL*Loader finds the data to load

• How SQL*Loader expects that data to be formatted

• How SQL*Loader is being configured (including memory management, selection and rejection

criteria, interrupted load handling, and so on) as it loads the data

• How SQL*Loader manipulates the data being loaded

The example in the slide includes:

• LOAD DATA: This statement indicates that this is the beginning of a new data load. If you are

continuing a load that was interrupted in progress, use the CONTINUE LOAD DATA statement.

• INFILE: This keyword specifies the name of a data file containing data that you want to load.

• BADFILE: This keyword specifies the name of a file into which rejected records are placed.

• DISCARDFILE: This keyword specifies the name of a file into which discarded records are placed.

• APPEND: This keyword is one of the options that you can use when loading data into a table that is

not empty. To load data into a table that is empty, use the INSERT keyword.

• INTO TABLE: This keyword enables you to identify tables, fields, and data types. It defines the

relationship between records in the data file and tables in the database.

• WHEN: This clause specifies one or more field conditions that each record must match before

SQL*Loader loads data.

Creating the SQL*Loader Control File

• The SQL*Loader control file contains:

‒ Location of the data to be loaded

‒ Data format

‒ Configuration details:

– Memory management

– Record rejection

– Interrupted load handling details

‒ Data manipulation details

1 -- This is a sample control file

2 LOAD DATA

3 INFILE 'SAMPLE.DAT'

4 BADFILE 'sample.bad'

5 DISCARDFILE 'sample.dsc'

6 APPEND

7 INTO TABLE emp

8 WHEN (57) = '. '

9 TRAILING NULLCOLS

10 (hiredate SYSDATE,

deptno POSITION(1:2) INTEGER EXTERNAL(3)

NULLIF deptno=BLANKS,

…

empno POSITION(45) INTEGER EXTERNAL

TERMINATED BY WHITESPACE,

…

)

Oracle Database 23c: Administration Workshop 23 - 4

• TRAILING NULLCOLS: This clause prompts SQL*Loader to treat any relatively positioned columns

that are not present in the record as null columns.

• Field list: This list provides information about column formats in the table that is being loaded.

Oracle Database 23c: Administration Workshop 23 - 5

You can use seven methods to load data with SQL*Loader.

• A conventional path load executes SQL INSERT statements to populate tables in an Oracle

database. Conventional path loads use SQL processing and a database COMMIT operation for

saving data. The insertion of an array of records is followed by a COMMIT operation. Each data load

may involve several transactions.

• Direct path loads use data saves to format data blocks and write them directly to the data files

bypassing the cache layer. This is why direct path loads are faster than conventional ones.

SQL*Loader Loading Methods

Conventional Load Direct Path Load

Uses COMMIT Uses data saves (faster operation)

Always generates redo entries Generates redo only under specific conditions

Enforces all constraints Enforces only PRIMARY KEY, UNIQUE, and NOT
NULL constraints

Fires INSERT triggers Does not fire INSERT triggers

Has the ability to load into clustered tables Cannot load into clustered tables

Allows table modifications during load
operation

Does not allow table modifications during load
operation

Maintains index entries on each insert Merges new index entries at the end of the load

Oracle Database 23c: Administration Workshop 23 - 6

Use the ROWS parameter to specify the number of rows you want SQL*Loader to read from the input file

before saving inserts in the database.

The intent of a data save is to provide an upper boundary (high-water mark) on the amount of work that

is lost when an instance failure occurs during a long-running direct path load. Setting the value of ROWS

to a small number adversely affects performance and data block space utilization.

The following features differentiate a data save from COMMIT:

• During a data save, only full database blocks are written to the database.

• The blocks are written after the high-water mark (HWM) of the table, as shown in the diagram in

the slide.

• After a data save, the HWM is moved.

• Internal resources are not released after a data save.

• A data save does not end the transaction.

• If the ROWS parameter is specified, then SQL*Loader issues a data save after that many rows are

loaded.

• Indexes are not updated at each data save. At the beginning of a direct path load, all indexes on

the table are marked unusable. The indexes are updated at the end of the load. If the load is

aborted after the indexes were marked unusable, then they will remain unusable.

• The control file option that lets the direct path API handle check constraints is EVALUATE CHECK

CONSTRAINTS.

Protecting Against Data Loss

• Use data saves to protect against loss of data due to instance failure.

• Use the SQL*Loader ROWS parameter to specify when a data save should occur

during a direct path load.

Oracle Database 23c: Administration Workshop 23 - 7

If you activate SQL*Loader express mode, specifying only the username and the TABLE parameter, it

uses default settings for several other parameters. You can override most of the defaults by specifying

additional parameters on the command line:

• TERMINATED_BY parameter, which specifies a field terminator

• ENCLOSED_BY parameter, which specifies a field enclosure character

• OPTIONALLY_ENCLOSED_BY parameter, which specifies an optional field enclosure character

The three delimiters can be a multicharacter string.

SQL*Loader express mode generates two files. The names of the log files come from the name of the

table (by default).

• A log file includes:

– Control file output

– SQL script for creating the external table and performing the load by using a SQL INSERT /*+

APPEND */ AS SELECT statement

Neither the control file nor the SQL script are used by SQL*Loader express mode. They are made

available to you in case you want to use them as a starting point to perform operations using regular

SQL*Loader or stand-alone external tables.

You can specify that direct path load be used instead of external tables with the DIRECT=YES

parameter. You can also specify that a conventional path be used instead of external tables with

DIRECT=NO.

• A log file similar to a SQL*Loader log file that describes the result of the operation. “%p” represents

the process ID of the SQL*Loader process.

SQL*Loader Express Mode

• Specify a table name to initiate an express mode load.

• Table columns must be scalar data types (character, number, or datetime).

• A data file can contain only delimited character data.

• SQL*Loader uses table column definitions to determine input data types.

• There is no need to create a control file.

Oracle Database 23c: Administration Workshop 23 - 8

Using SQL*Loader to Load a Table in a PDB

1. Use SQL*Loader express mode to insert rows into HR.EMP in

PDBC.

– No need to prepare a control file.

– The table columns must be scalar data types (character,

number, or datetime).

– SQL*Loader uses table column definitions to determine

input data types.

2. Use log files to verify load operation.

CDB1

PDBA PDBB PDBC

SQL*Loader

emp.dat

1:Kim:100:1000

2:Bob:200:2000

3:Ann:300:3000

4:Tom:400:4000

HR.EMP table

$ sqlldr system@PDBC TABLE=hr.emp

emp.log file
emp_%p.log_xt file

You can use SQL*Loader express mode with PDBs as shown in the slide.

Oracle Database 23c: Administration Workshop 23 - 9

Summary

Use SQL*Loader to load data from a non-Oracle database (or user files)

Oracle Database 23c: Administration Workshop 23 - 10

Transporting Data

Objectives

Use Data Pump Export and Import to move data between Oracle
databases

Explain the general architecture of Oracle Data Pump

Transport tablespaces between databases by using image copies or
backup sets

Oracle Database 23c: Administration Workshop 24 - 2

Data Pump Export and Import Clients

Data Pump Export is a utility for unloading data and metadata into a set of operating system files called

dump file sets. Data Pump Import is used to load metadata and data stored in an export dump file set into

a target system.

The Data Pump API accesses its files on the server rather than on the client.

These utilities can also be used to export from a remote database directly to a dump file set or load the

target database directly from a source database with no intervening files. This is known as network mode.

This mode is particularly useful to export data from a read-only source database.

At the center of every Data Pump operation is the master table, which is a table created in the schema of

the user running the Data Pump job. The master table maintains all aspects of the job. The master table is

built during a file-based export job and is written to the dump file set as the last step. Conversely, loading

the master table into the current user’s schema is the first step of a file-based import operation and is

used to sequence the creation of all objects imported.

Note: The master table is the key to Data Pump’s restart capability in the event of a planned or

unplanned stopping of the job. The master table is dropped when the Data Pump job finishes normally.

Oracle Database 23c: Administration Workshop 24 - 3

Data Pump Interfaces and Modes

• Data Pump Export and

Import interfaces:

‒ Command line

‒ Parameter file

‒ Interactive command line

‒ Enterprise Manager Cloud

Control

• Data Pump Export and

Import modes:

‒ Full

‒ Schema

‒ Table

‒ Tablespace

‒ Transportable tablespace

‒ Transportable database

You can interact with Data Pump Export and Import by using one of the following interfaces:

• Command-line interface: Enables you to specify most of the export parameters directly on the

command line

• Parameter-file interface: Enables you to specify all command-line parameters in a parameter file.

The only exception is the PARFILE parameter.

• Interactive-command interface: Stops logging in to the terminal and displays the export or

import prompts, where you can enter various commands. This mode is enabled by pressing Ctrl +

C during an export operation that is started with the command-line interface or the parameter-file

interface. Interactive-command mode is also enabled when you attach to an executing or stopped

job.

• Oracle Enterprise Manager Cloud Control: Select Schema > Database Export/Import. In the

menu, select the export or import operation you want to execute.

Data Pump Export and Import provide different modes for unloading and loading different portions of

the database. The mode is specified on the command line by using the appropriate parameter. The

available modes are also listed in the diagram in the slide.

• FULL=YES: All data and metadata of the CDB are to be exported. To perform a full export, you

must have the DATAPUMP_EXP_FULL_DATABASE role.

• SCHEMAS=hr,oe: All data and metadata of the schemas are to be exported. This is the default

mode for export. By default, if you do not have the DATAPUMP_EXP_FULL_DATABASE role, then

only your own schema gets exported. If you have the DATAPUMP_EXP_FULL_DATABASE role, then

you can specify a list of schemas.

Oracle Database 23c: Administration Workshop 24 - 4

• TABLES=hr.employees, oe.sales: Only the specified set of tables, partitions, and their

dependent objects are unloaded.

• TABLESPACES=tbs_app, tbs2: Only the tables contained in a specified set of tablespaces are

unloaded. If a table is unloaded, then its dependent objects are also unloaded. Both object

metadata and data are unloaded.

• TRANSPORT_TABLESPACES=tbs_app, tbs2: Only object metadata contained in the tablespaces

will be exported from the source database into the target database. The data is stored in data files.

Because the data files do not get transported with the dump file, they should be copied to the

target database before starting the import.

• TRANSPORTABLE=ALWAYS and FULL=YES: Both modes used together export all objects and data

necessary to create a complete copy of the database. To import the full transportable database,

use the TRANSPORT_DATAFILES='datafile1','datafile2' parameter to tell import that it is

a transportable-mode import and from which data files to get the actual data.

Oracle Database 23c: Administration Workshop 24 - 5

Data Pump Import Transformations

• You can remap:

‒ Data files by using REMAP_DATAFILE

‒ Tablespaces by using REMAP_TABLESPACE

‒ Schemas by using REMAP_SCHEMA

‒ Tables by using REMAP_TABLE

‒ Data by using REMAP_DATA

‒ Directory by using REMAP_DIRECTORY

Because object metadata is stored as XML in the dump file set, it is easy to apply transformations when

DDL is being formed during import. Data Pump Import supports several transformations:

• REMAP_DATAFILE is useful when moving databases across platforms that have different file-

system semantics. It changes the name of the source data file to the target data file name in all

SQL statements where the source data file is referenced: CREATE TABLESPACE, CREATE LIBRARY,

and CREATE DIRECTORY.

• REMAP_TABLESPACE enables objects to be moved from one tablespace to another.

• REMAP_SCHEMA provides the capability to change object ownership.

• REMAP_TABLE provides the ability to rename entire tables.

• REMAP_DATA provides the ability to remap data as it is being inserted.

• REMAP_DIRECTORY provides the ability to remap directories when you move databases between

platforms.

Oracle Database 23c: Administration Workshop 24 - 6

Using Oracle Data Pump with PDBs

Use the PDB service name to export from or import into a PDB.

CDB

CDB2

PDBA PDBB PDBC

PRODDB

Non-CDB

export

import

Dump file

CDB2

PDBA PDBB PDBC

CDB1

PDBA PDBB PDBC

export

import

Dump file

CDB1

PDBA PDBB PDBC

export

PRODDB

import

Non-CDB

Dump file

All types of export and import operations are possible between non-CDBs and PDBs. There are no

supported CDB-wide Data Pump export or import operations, but only per-PDB Data Pump export or

import operations, specifying the service name in the USERID clause.

• Export data from a non-CDB to import it into a PDB of a CDB.

• Export data from a PDB to import it into another PDB within the same CDB.

• Export data from a PDB to import it into a PDB of another CDB.

• Export data from a PDB to import it into a non-CDB.

Different types of Data Pump export and import are possible:

• Conventional export and import to export a full database (non-CDB or PDB) to import it into

another database (non-CDB or PDB)

• Full transportable export and import to transport a full database (non-CDB or PDB) to import it

into another database (non-CDB or PDB)

• Conventional or transportable tablespace export and import to export a full tablespace of a non-

CDB or PDB to import it into another tablespace of a non-CDB or PDB

• Schema export and import to export a full schema of a non-CDB or PDB to import it into another

tablespace of a non-CDB or PDB

• Table export and import to export a table of a non-CDB or PDB to import it into a non-CDB or PDB

Oracle Database 23c: Administration Workshop 24 - 7

Exporting from a Non-CDB and Importing into a PDB

1. Export PRODDB with the FULL=Y parameter:

2. If PDBC does not exist in CDB2, create PDBC in CDB2:

3. Open PDBC.

4. Create a Data Pump directory in PDBC.

5. Copy the dump file to the Data Pump directory.

6. Create the same PRODDB tablespaces in PDBC for new local

users’ objects.

7. Import into PDBC with the FULL=Y and REMAP parameters:

CDB

CDB2

PDBA PDBB PDBC

PRODDB

Non-CDB

export

import

Dump file

$ impdp system@PDBC FULL=Y DUMPFILE=proddb.dmp

SQL> CONNECT sys@CDB1

SQL> CREATE PLUGGABLE DATABASE PDBC …;

$ expdp system@PRODDB FULL=Y DUMPFILE=proddb.dmp

To export data from a non-CDB and import it into a PDB of a CDB, use the steps as described in the slide.

The choice made in the slide is to perform a conventional full database export from the non-CDB and a

conventional full database import into the PDB. You can also perform a full transportable, tablespace,

schema, or table-level export and import.

The tablespace export and import can be of either type: conventional or transportable.

The users exported from the non-CDB are re-created as local users in the PDB.

The tablespaces for the new local users and objects need to be created in the PDB before the import.

Oracle Database 23c: Administration Workshop 24 - 8

Exporting and Importing Between PDBs

1. Export PDBA from CDB1 with the FULL=Y parameter:

2. If PDBC does not exist in CDB2, create PDBC in CDB2:

3. Open PDBC.

4. Create a Data Pump directory in PDBC.

5. Copy the dump file to the Data Pump directory.

6. Create the same PDBA tablespaces in PDBC for new local users’

objects.

7. Import into PDBC of CDB2 with the FULL and REMAP parameters:
CDB2

PDBA PDBB PDBC

CDB1

PDBA PDBB PDBC

export

import

Dump file

$ expdp system@PDBA FULL=Y …

SQL> CONNECT sys@CDB2

SQL> CREATE PLUGGABLE DATABASE PDBC …;

$ impdp system@PDBC FULL=Y REMAP_SCHEMA=c##u:lu…

To export data from a PDB and import it into a PDB of the same or another CDB, use the steps as

described in the slide.

The choice made in the slide is to perform a full database export from the PDB and a full database import

into a PDB of another CDB. You can also perform a full transportable, tablespace, schema, or table-level

export and import.

The tablespace export and import can be of either type: conventional or transportable.

The local users exported from the PDB are re-created as local users in the target PDB.

The common users are not re-created because their names prefixed with C## imply that a common user

should be created. The statement fails with the following error message:

ORA-65094:invalid local user or role name

The only way to have common users re-created as local users is to use the clause

REMAP_SCHEMA=C##xxx:local_user_name.

You can also create a common user in the CDB root.

Oracle Database 23c: Administration Workshop 24 - 9

Full Transportable Export/Import

• A full transportable export exports all objects and data necessary to create a

complete copy of the database. Specify these parameter values:

‒ TRANSPORTABLE=ALWAYS

– FULL=Y

• A full transportable import imports a dump file only if it has been created using the

transportable option during export.

‒ TRANSPORT_DATAFILES

‒ If the TRANSPORTABLE parameter is specified, the NETWORK_LINK parameter is

required.

$ expdp user_name@pdb FULL=y DUMPFILE=expdat.dmp DIRECTORY=data_pump_dir

TRANSPORTABLE=always

Full Transportable Export

A full transportable export exports all objects and data necessary to create a complete copy of the

database. A mix of data movement methods is used:

• Objects residing in transportable tablespaces have only their metadata unloaded into the dump

file set. The data itself is moved when you copy the data files to the target database. The data files

that must be copied are listed at the end of the log file for the export operation.

• Objects residing in nontransportable tablespaces (for example, SYSTEM and SYSAUX) have both

their metadata and data unloaded into the dump file set, using direct path unload and external

tables.

The example shows a full transportable export of a PDB.

Performing a full transportable export has the following restrictions:

• If the database being exported contains either encrypted tablespaces or tables with encrypted

columns (either Transparent Data Encryption [TDE] columns or SecureFile LOB columns), then the

ENCRYPTION_PASSWORD parameter must also be supplied.

• The source and target databases must be on platforms with the same endianness if there are

encrypted tablespaces in the source database.

• If the source platform and the target platform are of different endianness, you must convert the

data being transported so that it is in the format of the target platform. Use either the

DBMS_FILE_TRANSFER package or the RMAN CONVERT command.

• A full transportable export is not restartable.

Oracle Database 23c: Administration Workshop 24 - 10

• All objects with storage that are selected for export must have all their storage segments either

entirely within administrative, nontransportable tablespaces (SYSTEM / SYSAUX) or entirely within

user-defined, transportable tablespaces. Storage for a single object cannot straddle the two kinds of

tablespaces.

• When transporting a database over the network using full transportable export, tables with LONG or

LONG RAW columns that reside in administrative tablespaces (such as SYSTEM or SYSAUX) are not

supported.

• When transporting a database over the network using full transportable export, auditing cannot be

enabled for tables stored in an administrative tablespace (such as SYSTEM and SYSAUX) if the audit

trail information itself is stored in a user-defined tablespace.

• If the source platform and the target platform are of different endianness, then you must convert

the data being transported so that it is in the format of the target platform. You can use the

DBMS_FILE_TRANSFER package or the RMAN CONVERT command to convert the data.

Full Transportable Import

Performing a full transportable import has the following requirements:

• A full transportable import of encrypted tablespaces is not supported in network mode or dump file

mode if the source and target platforms do not have the same endianess.

• When transporting a database over the network using full transportable import, tables with LONG or

LONG RAW columns that reside in administrative tablespaces (such as SYSTEM or SYSAUX) are not

supported.

• When transporting a database over the network using full transportable import, auditing cannot be

enabled for tables stored in an administrative tablespace (such as SYSTEM and SYSAUX) if the audit

trail information itself is stored in a user-defined tablespace.

Oracle Database 23c: Administration Workshop 24 - 11

Full Transportable Export/Import: Example

Endian conversion if necessary
RMAN CONVERT

Or
DBMS_FILE_TRANSFER

Data Files + dumpfile
transport

Tablespaces read-only :
• APPL1

• HRTBS

Source Database
PRODDB

Target Database
PDBPROD

$ expdp user_name@proddb FULL=y

DUMPFILE=expdat.dmp

DIRECTORY=data_pump_dir

TRANSPORTABLE=always

LOGFILE=export.log

1

2

3

4

5

$ impdp user_name@pdbprod FULL=y

DUMPFILE=expdat.dmp

DIRECTORY=data_pump_dir

TRANSPORT_DATAFILES=

'/oracle/oradata/prod/file1.dbf',

'/oracle/oradata/prod/file2.dbf',

'/oracle/oradata/prod/file3.dbf'

LOGFILE=import.log

To perform a full transportable operation, perform the following steps:

1. Before the export, make all the user-defined tablespaces in the database read-only.

2. Invoke the Oracle Data Pump export utility as a user with the DATAPUMP_EXP_FULL_DATABASE

role and specify the full transportable export options: FULL=Y and TRANSPORTABLE=ALWAYS.

The LOGFILE parameter is important because it will contain the list of data files that need to be

transported for the import operation.

3. Before the import, transport the dump file.

4. Transport the data files that you may have converted. If you are transporting the database to a

platform different from the source platform, determine if cross-platform database transport is

supported for both the source and target platforms. If both platforms have the same endianness,

no conversion is necessary. Otherwise, you must do a conversion of each tablespace in the

database either at the source or target database using either DBMS_FILE_TRANSFER or the RMAN

CONVERT command.

5. Invoke the Oracle Data Pump import utility as a user with the DATAPUMP_IMP_FULL_DATABASE

role and specify the full transportable import options: FULL=Y and TRANSPORT_DATAFILES.

6. Make the source tablespaces read-write. You can perform this operation before step 5.

Oracle Database 23c: Administration Workshop 24 - 12

Transporting a Database Over the Network: Example

• To transport a database over the network, perform an import using the

NETWORK_LINK parameter.

1. Create a database link in the target to the source database.

2. Make the user-defined tablespaces in the source database read-only.

3. Transport the data files for all the user-defined tablespaces from the source to the target

location.

4. Perform conversion of the data files if necessary.

5. Import in the target database.

$ impdp username@pdbname full=Y network_link = sourcedb

transportable = always

transport_datafiles = '/oracle/oradata/prod/sales01.dbf',

'/oracle/oradata/prod/cust01.dbf'

logfile=import.log

To transport a database over the network, use import with the NETWORK_LINK parameter. The import is

performed using a database link, and there is no dump file involved.

If the source or target database is a PDB, use the PDB service name in the USERID clause.

The Oracle Data Pump network import copies the metadata for objects contained within the user-defined

tablespaces and both the metadata and data for user-defined objects contained within the administrative

tablespaces, such as SYSTEM and SYSAUX.

When the import is complete, the user-defined tablespaces are in read-write mode.

Make the user-defined tablespaces read-write again in the source database.

Oracle Database 23c: Administration Workshop 24 - 13

RMAN enables you to transport databases, data files, and tablespaces across platforms. This includes

transporting tablespaces across platforms with different endian formats (byte ordering). You can convert

a database on the destination host or source host. For platforms that have the same endian format, no

conversion is needed.

• Cross-platform data transport can be based on image copies or backup sets.

• You can also create cross-platform inconsistent tablespace backups by using image copies and

backup sets. An inconsistent tablespace backup is one that is created when the tablespace is not in

read-only mode.

• With the use of backup sets, you can choose compression and multisection options, which reduce

the overall transport time.

Note: RMAN does not catalog backup sets created for cross-platform transport in the control file. This

ensures that backup sets created for cross-platform transportation are not used during regular restore

operations.

Using RMAN to Transport Data Across Platforms

• Transporting databases, data files, and tablespaces across platforms:

‒ Cross-platform transport (with different endian formats)

‒ Based on image copies and backup sets

‒ Use of inconsistent tablespace backups

• Benefits:

‒ Reduced down time for platform migrations

‒ Choice of compression and multisection

‒ Not cataloged in control file, not used for regular restore operations

Oracle Database 23c: Administration Workshop 24 - 14

rman target sys@orcl

RMAN> ALTER TABLESPACE bartbs READ ONLY;

RMAN> CONVERT TABLESPACE bartbs

TO PLATFORM 'Solaris Operating System (x86-64)'

FORMAT '/tmp/transport/%U';

RMAN CONVERT Command

• RMAN:

‒ Converts tablespaces, data files, or databases to the format of a destination platform

‒ Does not change input files

‒ Writes converted files to the output destination

‒ Can convert on the source or destination platform

‒ Assumes you initiate the data transfer

You use the RMAN CONVERT command to convert a tablespace, data file, or database to the format of a

destination platform in preparation for transport across different platforms:

• CONVERT DATAFILE

• CONVERT TABLESPACE

• CONVERT DATABASE

Input files are not altered by CONVERT because the conversion is not performed in place. Instead, RMAN

writes converted files to a specified output destination.

When you use the RMAN CONVERT command to convert data, you can convert the data either on the

source platform after running Data Pump export or on the target platform before running Data Pump

import. In either case, you must transfer the data files from the source system to the target system.

Restrictions: The CONVERT command does not process user data types that require endian conversions.

To transport objects between databases built on underlying types that store data in a platform-specific

format, use the Data Pump Import and Export utilities.

For detailed prerequisites, usage, restrictions, and syntax, see Oracle Database Backup and Recovery

Reference and Oracle Database Administrator’s Guide.

Oracle Database 23c: Administration Workshop 24 - 15

Transporting Data with Minimum Down Time

• Consider the required database open mode and endian format:

‒ Database transport: READ ONLY, same endian format

‒ Tablespace transport: READ WRITE, different endian format

• Example:

1. Create a database incremental level 0 backup and apply it to the destination.

2. Create incremental backups and apply them to the destination.

3. Repeat: Create and apply incremental backups.

4. Perform the final incremental backup in READ ONLY mode, apply it, and open

both databases consistent with each other.

When you develop a database transport strategy, you need to consider the endian format of the

platforms and the database open mode.

• Transport at the database level requires the same endian format (on source and destination) and

READ ONLY mode of the source database (which is not desirable for a database that users need to

update frequently).

• Tablespaces and backup sets can be transported across platforms of different endian format,

while the source database remains online (in READ WRITE mode).

The slide shows a sample workflow that considers these requirements. It is a strategy to minimize down

time by performing most of the work when the database is open in READ WRITE mode. The database is

in READ ONLY mode only for the final step (a small incremental backup), which is required so that both

databases can be opened in a completely consistent state.

Oracle Database 23c: Administration Workshop 24 - 16

To transport a tablespace from one platform to another (source to target), data files belonging to the

tablespace set must be converted to a format that can be understood by the target or destination

database. Although with Oracle Database disk structures conform to a common format, it is possible for

the source and target platforms to use different endian formats (byte ordering). When going to a different

endian platform, you can use the CONVERT command of the RMAN utility to convert the byte ordering.

This operation can be performed on either the source or the target platforms. For platforms that have the

same endian format, no conversion is needed.

The graphic in the slide depicts the possible steps to transport tablespaces from a source platform to a

target platform. However, it is possible to perform the conversion after shipping the files to the target

platform. The last two steps must be executed on the target platform.

Basically, the procedure is the same as when using previous releases of Oracle Database server except

when both platforms use different endian formats. It is assumed that both platforms are cross-

transportable compliant.

Transporting a Tablespace by Using Image Copies

Make tablespaces read-only.

Yes

Target
uses the same
endian format?

Use Data Pump to extract metadata.

Convert data files
by using RMAN.

Ship data files and dump file to target.

Use Data Pump to import metadata.

Make tablespaces read/write.

No

Source

Target

Oracle Database 23c: Administration Workshop 24 - 17

Using transportable tablespaces, Oracle data files (containing table data, indexes, and almost every other

Oracle database object) can be directly transported from one database to another. Transportable

tablespaces also provide a mechanism for transporting metadata.

You can use the transportable tablespace feature to move data across platform boundaries (with the

same character set). This simplifies the distribution of data from a data warehouse environment to data

marts, which often run on smaller platforms. It also allows a database to be migrated from one platform

to another by rebuilding the dictionary and transporting the user tablespaces.

Moving data by using transportable tablespaces is much faster than performing either an export/import

or an unload/load of the same data. This is because the data files containing all the actual data are just

copied to the destination location, and you use Data Pump to transfer only the metadata of the

tablespace objects to the new database.

To be able to transport data files from one platform to another, you must ensure that both the source

system and the target system are running on one of the supported platforms. Query

V$TRANSPORTABLE_PLATFORM to determine whether the endian ordering is the same on both platforms.

V$DATABASE has two columns that can be used to determine your own (source) platform name and

platform identifier.

Determining the Endian Format of a Platform

• Cross-platform transportable tablespaces:

‒ Simplify moving data between data warehouse and data marts

‒ Allow database migration from one platform to another

‒ Allow the same character set on source and target platforms

• List of supported platforms and their endian formats:

• Determine the endian format of source and target platforms:

SELECT * FROM V$TRANSPORTABLE_PLATFORM;

SELECT tp.endian_format

FROM v$transportable_platform tp, v$database sp

WHERE tp.platform_name = sp.platform_name;

Oracle Database 23c: Administration Workshop 24 - 18

The graphic in the slide illustrates transporting data with backup sets:

1. Before you create a backup set that can be used for cross-platform data transportation, the

following prerequisites must be met:

– The COMPATIBLE parameter must be set to 12.0 or greater.

– To transport an entire database, the source database must be open in read-only mode,

because the SYS and SYSAUX tablespaces participate in the transport.

– To transport tablespaces, when you use the DATAPUMP clause, the database must be open in

read/write mode so that Data Pump can access the metadata.

2. There are two alternatives that affect the location of the endian conversion (if needed).

– The FOR TRANSPORT clause indicates that the backup set can be transported to any

destination database. If the destination database uses an endian format that is different from

that of the source database, the endian format conversion is performed on the destination

database.

– The TO PLATFORM clause indicates that the conversion is performed on the source database.

– In both cases, the DATAPUMP clause indicates that an export dump file for the tablespaces

must be created. In this case, the database must be opened in read/write mode. The export

can be performed after the last incremental backup.

3. A tablespace indicates metadata and backup data of the source database.

4. The gray arrow indicates the data transport.

5. Backup data and metadata and a tablespace are transported in the destination database.

Transporting Data with Backup Sets

Prerequisites

• COMPATIBLE=12.0 (or greater)
• READ ONLY mode for creation of cross-platform database backup
• Database in READ WRITEmode for creation of cross-platform

tablespace backup

1

Data transport

Destination?

TO PLATFORM

Endian
conversion

Source Database

Backup
data

Endian
conversionFOR TRANSPORT

Metadata

Destination
Database

Metadata

2

3

4

5

Backup
data

TO PLATFORM

Oracle Database 23c: Administration Workshop 24 - 19

Transporting a Tablespace

1. Verify the prerequisites.

2. Start an RMAN session in the source database.

3. Query the exact name of the destination platform.

4. Change the tablespace to read-only.

5. Perform a cross-platform transportable backup and a Data Pump export.

‒ Conversion on the destination host

‒ Conversion on the source host

RMAN> BACKUP FOR TRANSPORT FORMAT '/bkp/test.bck'

DATAPUMP FORMAT '/bkp/test_meta.bck' TABLESPACE test;

Metadata

Source Database

RMAN> ALTER TABLESPACE test READ ONLY;

RMAN> BACKUP TO PLATFORM 'HP Tru64 UNIX'

FORMAT '/bkp/test.bck'

DATAPUMP FORMAT '/bkp/test_meta.bck' TABLESPACE test;

Perform the following steps to transport a tablespace:

1. Verify the prerequisites: The source database must be opened in read/write mode.

2. Start an RMAN session and connect to the target instance.

3. To transport tablespaces across platforms, query the exact name of the destination platform.

4. Change the tablespace to read-only.

5. Back up the source tablespace by using the BACKUP command with the TO PLATFORM or FOR

TRANSPORT clause to indicate where the conversion takes place. Use the DATAPUMP clause to

specify the location of a backup set that contains metadata of the named tablespace.

Note: The ALLOW INCONSISTENT clause of the BACKUP command enables you to back up tablespaces

that are not in read-only mode. Although the backup is created, you cannot plug these tablespaces

directly into the target database because they are inconsistent. You must later create an incremental

backup of the tablespaces when they are in read-only mode. This incremental backup must contain the

DATAPUMP clause that creates an export dump file of the tablespace metadata.

Oracle Database 23c: Administration Workshop 24 - 20

6. Disconnect from the source database and move the backup sets and the Data Pump file to the

destination host. You can use operating system utilities for this task.

7. Connect to the destination host, to which the tablespace is transported, as TARGET. Ensure that

the destination database is opened in read-write mode.

8. Use the RESTORE command in the destination database as shown in the slide. The FOREIGN

TABLESPACE clause points to the HP source data file. The FORMAT clause indicates the destination

location. The DUMP FILE FROM BACKUPSET clause restores the required metadata from the Data

Pump file.

An additional example:

1. Create cross-platform, inconsistent, incremental backups with the ALLOW INCONSISTENT clause:

BACKUP INCREMENTAL FROM SCN=2720649 FOR TRANSPORT

ALLOW INCONSISTENT FORMAT '/home/u_inc1.bkp' TABLESPACE

users;

2. Restore the inconsistent cross-platform tablespace backup with the RESTORE FOREIGN

TABLESPACE command.

3. Recover the restored data files copied with cross-platform incremental backups with the RECOVER

FOREIGN DATAFILECOPY command.

Transporting a Tablespace

6. Move the backup sets and the Data Pump export

dump file to the destination host.

7. Connect to the destination host as TARGET.

8. Restore the cross-transportable backup and the Data Pump export.

RMAN> RESTORE FOREIGN TABLESPACE test

FORMAT '/oracle/test.dbf'

FROM BACKUPSET '/bkp/test.bck'

DUMP FILE FROM BACKUPSET '/bkp/test_meta.bck' ;

Metadata

Destination
Database

Oracle Database 23c: Administration Workshop 24 - 21

To use inconsistent tablespaces in a workflow like the one described on the previous pages:

• Create a cross-platform inconsistent incremental backup with the ALLOW INCONSISTENT clause:

BACKUP INCREMENTAL FROM SCN=2720649 FOR TRANSPORT

ALLOW INCONSISTENT FORMAT '/u01/backup/inc1.bkp' TABLESPACE users;

• Restore the inconsistent cross-platform tablespace backup with the RESTORE FOREIGN

TABLESPACE command.

• Recover restored data file copies with cross-platform incremental backups by using the RECOVER

FOREIGN DATAFILECOPY command.

Note: The ALLOW INCONSISTENT clause enables you to back up tablespaces that are not in read-only

mode. Although the backup is created, you cannot plug these tablespaces directly into the target

database because they are inconsistent. You must later create an incremental backup of the tablespaces

when they are in read-only mode. This incremental backup must contain the DATAPUMP clause that

creates an export dump file of the tablespace metadata.

Transporting Inconsistent Tablespaces

• Create cross-platform inconsistent incremental backups with the ALLOW

INCONSISTENT clause.

• Restore the inconsistent cross-platform tablespace backup with the RESTORE

FOREIGN TABLESPACE command.

• Recover restored data file copies with cross-platform incremental backups with the

RECOVER FOREIGN DATAFILECOPY command.

Oracle Database 23c: Administration Workshop 24 - 22

Summary

Use Data Pump Export and Import to move data between Oracle
databases

Explain the general architecture of Oracle Data Pump

Transport tablespaces between databases by using image copies or
backup sets

Oracle Database 23c: Administration Workshop 24 - 23

Using External Tables to Load and
Transport Data

Objectives

Use external tables to move data via platform-independent files

Oracle Database 23c: Administration Workshop 25 - 2

External Tables

External tables allow SQL statements to access data in external sources as if it were in a table in the

database. You can connect to the database instance and create metadata for the external table by using

DDL. The DDL for an external table consists of two parts:

• One part that describes the Oracle Database column types

• Another part that describes the mapping of the external data to the Oracle Database data columns

An external table does not describe any data that is stored in the database. It also does not describe how

data is stored in the external source. Instead, it describes how the external table layer must present the

data to the server. It is the responsibility of the access driver and the external table layer to do the

necessary transformations required on the data in the external file so that it matches the external table

definition. External tables are read-only; therefore, no DML operations are possible.

There are two access drivers used with external tables.

• The ORACLE_LOADER access driver can be used only to read table data from an external table and

load it into the database. It uses text files as the data source.

• The ORACLE_DATAPUMP access driver can both load table data from an external file into the

database and also unload data from the database into an external file. It uses binary files as the

external files.

You can partition data contained in external tables, which allows you to take advantage of the same

performance improvements provided when you partition tables stored in a database.

Oracle Database 23c: Administration Workshop 25 - 3

External Tables: Benefits

• Data can be used directly from the external file or loaded into another database.

• External data can be queried and joined directly in parallel with tables residing in the

database, without requiring it to be loaded first.

• The results of a complex query can be unloaded to an external file.

• You can combine generated files from different sources for loading purposes.

The data files created for the external table can be moved and used as the data files for another external

table in the same database or a different database.

External data can be queried and joined directly in parallel to tables residing in the database, without

requiring the data to be loaded first. You can choose to have your applications directly access external

tables with the SELECT command, or you can choose to have data loaded first into a target database.

The results of a complex query can be unloaded to an external file by using the ORACLE_DATAPUMP

access driver.

Data files that are populated by different external tables can all be specified in the LOCATION clause of

another external table. This provides an easy way of aggregating data from multiple sources. The only

restriction is that the metadata for all the external tables must be exactly the same.

Oracle Database 23c: Administration Workshop 25 - 4

ORACLE_LOADER Access Driver

CREATE TABLE extab_employees

(employee_id NUMBER(4),

first_name VARCHAR2(20),

last_name VARCHAR2(25),

hire_date DATE)

ORGANIZATION EXTERNAL

(TYPE ORACLE_LOADER

DEFAULT DIRECTORY extab_dat_dir

ACCESS PARAMETERS

(records delimited by newline

badfile extab_bad_dir:'empxt%a_%p.bad'

logfile extab_log_dir:'empxt%a_%p.log'

fields terminated by ','

missing field values are null

(employee_id, first_name, last_name,

hire_date char date_format date mask "dd-mon-yyyy“))

LOCATION ('empxt1.dat', 'empxt2.dat'))

PARALLEL REJECT LIMIT UNLIMITED;

The metadata for an external table is created by using the CREATE TABLE statement. The

ORACLE_LOADER access driver uses the SQL*Loader syntax to define the external table. This command

does not create the external text files.

The example in the slide shows three directory objects (EXTAB_DAT_DIR, EXTAB_BAD_DIR, and

EXTAB_LOG_DIR) that are created and mapped to existing OS directories to which the user is granted

access.

When the EXTAB_EMPLOYEES table is accessed, SQL*Loader functionality is used to load the table, and at

that instance, the log file and bad file are created.

Best-practice tip: If you have a lot of data to load, enable PARALLEL for the load operation:

ALTER SESSION ENABLE PARALLEL DML;

Oracle Database 23c: Administration Workshop 25 - 5

ORACLE_DATAPUMP Access Driver

CREATE TABLE ext_emp_query_results

(first_name, last_name, department_name)

ORGANIZATION EXTERNAL

(

TYPE ORACLE_DATAPUMP

DEFAULT DIRECTORY ext_dir

LOCATION ('emp1.exp','emp2.exp','emp3.exp')

)

PARALLEL

AS

SELECT e.first_name,e.last_name,d.department_name

FROM employees e, departments d

WHERE e.department_id = d.department_id AND

d.department_name in ('Marketing', 'Purchasing');

This example shows you how the external table population operation can help to export a selective set of

records resulting from the join of the EMPLOYEES and DEPARTMENTS tables.

Because the external table can be large, you can use a parallel populate operation to unload your data to

an external table. As opposed to a parallel query from an external table, the degree of parallelism of a

parallel populate operation is constrained by the number of concurrent files that can be written to by the

access driver. There is never more than one parallel execution server writing into one file at a particular

point in time.

The number of files in the LOCATION clause must match the specified degree of parallelism because each

input/output (I/O) server process requires its own file. Any extra files that are specified are ignored. If

there are not enough files for the specified degree of parallelism, the degree of parallelization is lowered

to match the number of files in the LOCATION clause.

The external table is read-only after it has been populated. The SELECT command can be very complex,

allowing specific information to be populated in the external table. The external table, having the same

file structure as binary Data Pump files, can then be migrated to another system, and imported with the

impdp utility or read as an external table.

Note: For more information about the ORACLE_DATAPUMP access driver parameters, see the Oracle

Database Utilities guide.

Oracle Database 23c: Administration Workshop 25 - 6

External Tables

• Querying an external table:

• Querying and joining an external table with an internal table:

• Appending data from an external table to an internal table:

SELECT * FROM extab_employees;

SELECT e.employee_id, e.first_name, e.last_name, d.department_name

FROM departments d, extab_employees e

WHERE d.department_id = e.department_id;

INSERT /*+ APPEND */ INTO hr.employees

SELECT * FROM extab_employees;

External tables are queried just like internal database tables. The first example illustrates querying an

external table named EXTAB_EMPLOYEES and only displaying the results. The results are not stored in

the database.

The second example shows the joining of an internal table named DEPARTMENTS with an external table

named EXTAB_EMPLOYEES and only displaying the results.

The third example in the slide illustrates the direct appending of an internal table data with the query and

loading of data from an external table.

Oracle Database 23c: Administration Workshop 25 - 7

Viewing Information About External Tables

Dictionary Views Description

[DBA| ALL| USER]_EXTERNAL_TABLES Specific attributes

[DBA| ALL| USER]_EXTERNAL_LOCATIONS Data sources

[DBA| ALL| USER]_TABLES All tables

[DBA| ALL| USER]_TAB_COLUMNS Columns of tables

[DBA| ALL]_DIRECTORIES Directory objects

The data dictionary views listed in the slide provide information about external tables. See Oracle

Database Reference for detailed information about each view.

Oracle Database 23c: Administration Workshop 25 - 8

Summary

Use external tables to move data via platform-independent files

Oracle Database 23c: Administration Workshop 25 - 9

Practice Overview

• Querying External Tables

• Unloading External Tables

Oracle Database 23c: Administration Workshop 25 - 10

Automated Maintenance Tasks: Overview

Objectives

Discuss automated maintenance tasks

Describe Oracle Database’s proactive database maintenance
infrastructure

Explain maintenance windows

Oracle Database 23c: Administration Workshop 26 - 2

Proactive Database Maintenance Infrastructure

Automatic
Workload

Repository

Advisory
framework

Server
alerts

Data warehouse
of the database

Automatic collection
of important statistics

Direct memory
access

Automatic Proactive

Efficient

Automatic
Diagnostic
Repository

Reactive

Critical
errors

Automated
tasks

Proactive database maintenance is made easy by the sophisticated infrastructure of Oracle Database,

which includes the following main elements:

• The Automatic Workload Repository (AWR) is a built-in repository in each Oracle database. At

regular intervals, the Oracle Database server takes a snapshot of all its vital statistics and workload

information, and stores this data in the AWR. The captured data can be analyzed by you, by the

database server itself, or by both.

• Using automated tasks, the database server performs routine maintenance operations, such as

regular backups, refreshing optimizer statistics, and database health checks.

Reactive database maintenance includes critical errors and conditions discovered by database health

checkers:

• For problems that cannot be resolved automatically and require administrators to be notified

(such as running out of space), the Oracle Database server provides server-generated alerts. The

Oracle Database server, by default, monitors itself and sends out alerts to notify you of problems.

The alerts notify you and often also provide recommendations on how to resolve the reported

problem. The DBA can also be alerted by users whose transactions are locked by other users'

transactions and are waiting for locks to be released.

• Recommendations are generated from several advisors, each of whom is responsible for a

subsystem. For example, there are memory, segment, and SQL advisors.

This lesson focuses on automated maintenance tasks.

Oracle Database 23c: Administration Workshop 26 - 3

Automated Maintenance Tasks: Components

• Automated maintenance tasks

‒ Tasks started automatically

‒ Performs maintenance operations on the database

‒ Controlled by Maintenance windows

• Maintenance windows

‒ Predefined time intervals

‒ Intended to occur during a period of low system load

Automated maintenance tasks are tasks that are started automatically at regular intervals to perform

maintenance operations on the database. An example is a task that gathers statistics on schema objects

for the query optimizer.

Automated maintenance tasks are executed when the system load is expected to be light. You can enable

and disable individual maintenance tasks, and configure when these tasks run and what resource

allocations they are allotted.

Automated maintenance tasks run in maintenance windows, which are predefined time intervals that are

intended to occur during a period of low system load. You can customize maintenance windows based on

the resource usage patterns of your database, or disable certain default windows from running. You can

also create your own maintenance windows.

Oracle Database 23c: Administration Workshop 26 - 4

Automated Maintenance Tasks: Components

• Oracle Scheduler

‒ An enterprise job scheduler

‒ A job is created for each maintenance task

‒ Jobs are scheduled to run in a maintenance window when it opens.

• Oracle Database Resource Manager

‒ Manage resource allocation for a database

‒ Uses the DEFAULT_MAINTENANCE_PLAN resource plan by default.

‒ Predefined maintenance windows use the DEFAULT_MAINTENANCE_PLAN

Oracle Scheduler is an enterprise job scheduler that helps simplify the scheduling of hundreds or even

thousands of tasks. Oracle Scheduler (the Scheduler) is implemented by the procedures and functions in

the DBMS_SCHEDULER PL/SQL package and can be invoked through Enterprise Manager Cloud Control.

When a maintenance window opens, an Oracle Scheduler job is created for each maintenance task that is

scheduled to run in that window.

Oracle Database Resource Manager (the Resource Manager) enables you to manage multiple workloads

within a database that are contending for system and database resources. The elements of the Resource

Manager include resource consumer groups, resource plans, and resource plan directives. The

DBMS_RESOURCE_MANAGER PL/SQL package is used to create and maintain these elements.

By default, all predefined maintenance windows use the DEFAULT_MAINTENANCE_PLAN resource plan.

Automated maintenance tasks run under its subplan named ORA$AUTOTASK. This subplan divides its

portion of total resource allocation equally among the maintenance tasks. To change the resource

allocation for automated maintenance tasks within a maintenance window, you must change the

percentage of resources allocated to the ORA$AUTOTASK subplan in the resource plan for that window.

Oracle Database 23c: Administration Workshop 26 - 5

Predefined Automated Maintenance Tasks

Task Description

Automatic Optimizer Statistics Collection Collects statistics for all schema objects that have
no statistics or only stale statistics

Optimizer Statistics Advisor Analyzes how statistics are being gathered and
suggests changes

Automatic Segment Advisor Identifies segments that have reclaimable space
and makes defragmenting recommendations

Automatic SQL Tuning Advisor Examines the performance of high-load SQL
statements and makes tuning recommendations

SQL Plan Management (SPM) Evolve
Advisor

Evolves plans that have recently been added to the
SQL plan baseline

Oracle Database includes the following predefined automated maintenance tasks:

• Automatic Optimizer Statistics Collection: Collects optimizer statistics for all schema objects in the

database for which there are no statistics or only stale statistics. The statistics gathered by this

task are used by the SQL query optimizer to improve the performance of SQL execution.

• Optimizer Statistics Advisor: Analyzes how statistics are being gathered and suggests changes

that can be made to fine-tune statistics collection

• Automatic Segment Advisor: Identifies segments that have space available for reclamation, and

makes recommendations on how to defragment those segments. You can also run the Segment

Advisor manually to obtain more up-to-the-minute recommendations or recommendations on

segments that the Automatic Segment Advisor did not examine for possible space reclamation.

• Automatic SQL Tuning Advisor: Examines the performance of high-load SQL statements and

makes recommendations on how to tune those statements. You can configure this advisor to

automatically implement SQL profile recommendations.

• SQL Plan Management (SPM) Evolve Advisor: Evolves plans that have recently been added to the

SQL plan baseline. The advisor simplifies plan evolution by eliminating the requirement to do it

manually.

All automated maintenance task job names begin with ORA$AT. For example, the job for the Automatic

Segment Advisor might be called ORA$AT_SA_SPC_SY_26.

Oracle Database 23c: Administration Workshop 26 - 6

These tasks run in a set of predefined Oracle Scheduler job windows. The tasks are assigned to Oracle

Database Resource Manager resource consumer groups. The Oracle Database Resource Manager

resource plan that is in effect during the window controls the resources that the tasks are allowed to

consume, such as CPU.

By default, all automated maintenance tasks are configured to run in all maintenance windows.

Oracle Database 23c: Administration Workshop 26 - 7

Maintenance Windows

• Maintenance windows are:

‒ Contiguous time intervals during which automated maintenance tasks are run

‒ Oracle Scheduler windows that belong to the window group named

MAINTENANCE_WINDOW_GROUP

A maintenance window is a contiguous time interval during which automated maintenance tasks are run.

Maintenance windows are Oracle Scheduler windows that belong to the window group named

MAINTENANCE_WINDOW_GROUP.

Oracle Database 23c: Administration Workshop 26 - 8

Predefined Maintenance Windows

Task Description

MONDAY_WINDOW Starts at 10 PM on Monday and ends at 2 AM

TUESDAY_WINDOW Starts at 10 PM on Tuesday and ends at 2 AM

WEDNESDAY_WINDOW Starts at 10 PM on Wednesday and ends at 2 AM

THURSDAY_WINDOW Starts at 10 PM on Thursday and ends at 2 AM

FRIDAY_WINDOW Starts at 10 PM on Friday and ends at 2 AM

SATURDAY_WINDOW Starts at 6 AM on Saturday and is 20 hours long

SUNDAY_WINDOW Starts at 6 AM on Sunday and is 20 hours long

By default, there are seven predefined maintenance windows, each representing a day of the week. The

MAINTENANCE_WINDOW_GROUP window group consists of these seven windows.

By default, the weekday maintenance window starts at 10 PM and lasts four hours. On Saturday and

Sunday, the maintenance window starts at 6 AM and lasts for 20 hours. All attributes of the maintenance

windows are customizable, including the start and end times, frequency, days of the week, and so on.

In the case of a very long maintenance window, all automated maintenance tasks, except Automatic SQL

Tuning Advisor, are restarted every four hours. This feature ensures that maintenance tasks are run

regularly, regardless of window size.

Oracle Database 23c: Administration Workshop 26 - 9

Automated Maintenance Tasks

Autotask maintenance process:

1. The maintenance window opens.

2. The Autotask background process schedules jobs.

3. Oracle Scheduler initiates jobs.

4. Oracle Resource Manager limits the impact of Autotask jobs.

By analyzing the information stored in the AWR, the database server can identify the need to perform

routine maintenance tasks, such as optimizer statistics refresh. The automated maintenance tasks

infrastructure enables the Oracle Database server to automatically perform such operations. It uses

Oracle Scheduler to run such tasks in predefined maintenance windows.

When a maintenance window opens, Oracle Database creates an Oracle Scheduler job for each

maintenance task that is scheduled to run in that window. Each job is assigned a job name that is

generated at run time. When an automated maintenance task job finishes, it is deleted from the Oracle

Scheduler job system. However, the job can still be found in the Scheduler job history.

The impact of automated maintenance tasks on normal database operations can be limited by

associating a Database Resource Manager resource plan to the maintenance window.

Oracle Database 23c: Administration Workshop 26 - 10

Summary

Discuss automated maintenance tasks

Describe Oracle Database’s proactive database maintenance
infrastructure

Explain maintenance windows

Oracle Database 23c: Administration Workshop 26 - 11

Automated Maintenance Tasks:
Managing Tasks and Windows

Objectives

Create, modify, and remove maintenance windows

Enable and disable maintenance tasks

Reduce or increase resource allocation to automated maintenance tasks

Oracle Database 23c: Administration Workshop 28 - 2

Configuring Automated Maintenance Tasks

• You can perform the following configuration tasks:

‒ Adjust the duration and start time of the maintenance window.

‒ Control the resource plan that allocates resources to automated maintenance tasks

during each window.

‒ Enable or disable individual tasks in some or all maintenance windows.

The Automated Maintenance Tasks feature determines when—and in what order—tasks are performed.

As a DBA, you can perform the following configuration tasks:

• Adjust the duration and start time of the maintenance window if the maintenance window turns

out to be inadequate for the maintenance workload.

• Control the resource plan that allocates resources to automated maintenance tasks during each

window.

• Enable or disable individual tasks in some or all maintenance windows.

• In a RAC environment, shift maintenance work to one or more instances by mapping maintenance

work to a service. Enabling the service on a subset of instances shifts maintenance work to these

instances.

Enterprise Manager is the preferred way to control automated maintenance tasks. However, you can also

use the DBMS_AUTO_TASK_ADMIN package.

Oracle Database 23c: Administration Workshop 28 - 3

Enabling and Disabling Maintenance Tasks

• Enable or disable maintenance tasks for all maintenance windows:

‒ Use the ENABLE and DISABLE procedures of the DBMS_AUTO_TASK_ADMIN

package with the WINDOW_NAME argument set to NULL.

‒ Use the ENABLE and DISABLE procedures with no arguments to enable or disable

all automated maintenance tasks for all windows.

• Enable or disable maintenance tasks for specific maintenance windows:

‒ Use the ENABLE and DISABLE procedures of the DBMS_AUTO_TASK_ADMIN

package with the WINDOW_NAME argument set to a window name.

With a single operation, you can disable or enable a particular automated maintenance task for all

maintenance windows. You can disable a particular automated maintenance task for all maintenance

windows by calling the DISABLE procedure of the DBMS_AUTO_TASK_ADMIN PL/SQL package without

supplying the WINDOW_NAME argument. To enable a maintenance task, use the

DBMS_AUTO_TASK_ADMIN.ENABLE procedure. To enable or disable all automated maintenance tasks for

all windows, call the ENABLE or DISABLE procedure with no arguments.

You can disable a maintenance task for a specific window by specifying the window name in the

WINDOW_NAME argument.

Oracle Database 23c: Administration Workshop 28 - 4

Creating and Managing Maintenance Windows

• To create a new maintenance window:

1. Use the DBMS_SCHEDULER.CREATE_WINDOW procedure to create the window.

2. Use the DBMS_SCHEDULER.ADD_GROUP_MEMBER procedure to add the new window to the

MAINTENANCE_WINDOW_GROUPwindow group.

• To change the attributes of a maintenance window:

1. Use the DBMS_SCHEDULER.DISABLE procedure to disable the window.

2. Use the DBMS_SCHEDULER.SET_ATTRIBUTE procedure to modify the window attributes.

3. Use the DBMS_SCHEDULER.ENABLE procedure to re-enable the window.

• To remove a maintenance window, use the

DBMS_SCHEDULER.REMOVE_GROUP_MEMBER procedure.

To create a new maintenance window, you must create an Oracle Scheduler window object and then add

it to the MAINTENANCE_WINDOW_GROUP window group. Use the DBMS_SCHEDULER.CREATE_WINDOW

package procedure to create the window and the DBMS_SCHEDULER.ADD_GROUP_MEMBER procedure to

add the new window to the window group.

Use the DBMS_SCHEDULER.SET_ATTRIBUTE procedure to modify the attributes of a window. Note that

you must use the DBMS_SCHEDULER.DISABLE subprogram to disable the window before making

changes to it, and then re-enable the window with DBMS_SCHEDULER.ENABLE when you are finished. If

you change a window when it is currently open, the change does not take effect until the next time the

window opens.

You can use the DBMS_SCHEDULER.REMOVE_GROUP_MEMBER procedure to remove an existing

maintenance window from the MAINTENANCE_WINDOW_GROUP window group. The window continues to

exist but no longer runs automated maintenance tasks. Any other Oracle Scheduler jobs assigned to this

window continue to run as usual.

Additional information about Oracle Scheduler is provided in the Scheduling Tasks by Using Oracle

Scheduler learning module.

Oracle Database 23c: Administration Workshop 28 - 5

Resource Allocations for Automated Maintenance Tasks

• Automated maintenance tasks run under the ORA$AUTOTASK subplan of the

DEFAULT_MAINTENANCE_PLAN resource plan.

• Any resource allocation that is unused by sessions in SYS_GROUP is shared by

sessions belonging to OTHER_GROUPS and ORA$AUTOTASK in the percentages

shown below:

• ORA$AUTOTASK cannot be allocated more than 90% of the CPU resources.

Consumer Group/Subplan Level 1 Maximum Utilization Limit

ORA$AUTOTASK 5% 90

OTHER_GROUPS 20% -

SYS_GROUP 75% -

When a maintenance window opens, DEFAULT_MAINTENANCE_PLAN in the Resource Manager is

automatically set to control the amount of CPU resources used by automated maintenance tasks. To be

able to give different priorities to each possible task during a maintenance window, various consumer

groups are assigned to DEFAULT_MAINTENANCE_PLAN.

By default, all predefined maintenance windows use the DEFAULT_MAINTENANCE_PLAN resource plan.

Automated maintenance tasks run under its subplan called ORA$AUTOTASK. This subplan divides its

portion of total resource allocation equally among the maintenance tasks.

In this plan, any sessions in the SYS_GROUP consumer group get priority. Any resource allocation that is

unused by sessions in SYS_GROUP is then shared by sessions belonging to the other consumer groups

and subplans in the plan. Of that allocation, 5% goes to maintenance tasks and 20% goes to user

sessions. The maximum utilization limit for ORA$AUTOTASK is 90. Therefore, even if the CPU is idle, this

group/plan cannot be allocated more than 90% of the CPU resources.

Additional information about the Resource Manager is provided in the Managing Database Resources

learning module.

Oracle Database 23c: Administration Workshop 28 - 6

Changing Resource Allocations for Maintenance Tasks

• Change the percentage of resources allocated to the ORA$AUTOTASK subplan in the

resource plan for the window of interest.

• Adjust the resource allocation for one or more subplans or consumer groups in the

window's resource plan so that the resource allocation at the top level of the plan

adds up to 100%.

To change the resource allocation for automated maintenance tasks within a maintenance window, you

must change the percentage of resources allocated to the ORA$AUTOTASK subplan in the resource plan

for that window. You must also adjust the resource allocation for one or more subplans or consumer

groups in the window's resource plan so that the resource allocation at the top level of the plan adds up

to 100%.

By default, the resource plan for each predefined maintenance window is

DEFAULT_MAINTENANCE_PLAN. However, you can assign any resource plan to any maintenance window.

If you do change a maintenance window resource plan, you must include the ORA$AUTOTASK subplan in

the new plan.

See the Oracle Database Administrator’s Guide for details on modifying resource plans and subplans.

Oracle Database 23c: Administration Workshop 28 - 7

Summary

Create, modify, and remove maintenance windows

Enable and disable maintenance tasks

Reduce or increase resource allocation to automated maintenance tasks

Oracle Database 23c: Administration Workshop 28 - 8

Practice Overview

• Enabling and Disabling Automated Maintenance Tasks

• Modifying the Duration of a Maintenance Window

Oracle Database 23c: Administration Workshop 28 - 9

Database Monitoring and Tuning
Performance Overview

Objectives

Explain the Oracle performance tuning methodology

Describe the activities that you perform to manage database
performance

Oracle Database 23c: Administration Workshop 28 - 2

Performance management includes several activities.

• Performance planning is the process of establishing the environment: the hardware, software,

operating system, network infrastructure, and so on.

• Performance monitoring is an activity that helps the DBA locate bottlenecks and correct problem

areas.

• Instance tuning is the actual adjustment of Oracle Database parameters and operating system

(OS) parameters to gain better performance of the Oracle Database.

• SQL tuning involves making your application submit efficient SQL statements. SQL tuning is

performed for the application as a whole, as well as for individual statements. At the application

level, you want to be sure that different parts of the application are taking advantage of each

other’s work and not competing for resources unnecessarily.

A DBA can look at hundreds of performance measurements, covering everything from network

performance and disk input/output (I/O) speed to the time spent working on individual application

operations. These performance measurements are commonly referred to as database metrics.

Oracle Database 23c: Administration Workshop 28 - 3

Performance Management Activities

DBA

Input/output
device

contention

Application
code

problems

Resource
contention

Network
bottlenecks

Memory
allocation

issues

Performance Planning Considerations

Workload
Testing

Application
Design Principles Scalability

New Application
Deployment

System
Architecture
Investment

There are many facets to performance planning. Planning must include a balance between performance

(speed), cost, and reliability.

Investment in System Architecture: You must consider the investment in your system architecture—the

hardware and software infrastructure needed to meet your requirements. This, of course, requires

analysis to determine the value of your given environment, application, and performance requirements.

For example, the number of hard drives and controllers has an impact on the speed of data access.

Scalability: The ability of an application to scale is also important. This means that you are able to handle

more and more users, clients, sessions, or transactions without incurring a huge impact on overall system

performance. The most obvious violator of scalability is serializing operations among users. If all users go

through a single path one at a time, then, as more users are added, there are definitely adverse effects on

performance. This is because more and more users line up to go through that path. Poorly written SQL

also affects scalability. It requires many users to wait for inefficient SQL to complete, each user competing

with the other on a large number of resources that they are not actually in need of.

Application Design Principles: The principles of application design can greatly affect performance.

Simplicity of design, use of views and indexes, and data modeling are all very important.

Workload Testing: Any application must be tested under a representative production workload. This

requires estimating database size and workload and generating test data and system load.

Deployment of New Applications: Performance must be considered as new applications (or new

versions of applications) are deployed. Sometimes, design decisions are made to maintain compatibility

with old systems during the rollout. A new database should be configured (on the basis of the production

environment) specifically for the applications that it hosts.

Oracle Database 23c: Administration Workshop 28 - 4

A difficult and necessary task is testing the existing applications when changing the infrastructure (for

example, upgrading the database to a newer version or changing the operating system or server

hardware). Before the application is deployed for production in the new configuration, you want to know

the impact. The application will almost certainly require additional tuning. You need to know that the

critical functionality will perform, without errors.

Oracle Database 23c: Administration Workshop 28 - 5

Database Maintenance

Automatic
Workload

Repository

Advisory
framework

Server
alerts

Data warehouse
of the database

Automatic collection
of important statistics

Direct memory
access

Automatic Proactive

Efficient

Automatic
Diagnostic
Repository

ReactiveAutomated
tasks

Critical
errors

Proactive database maintenance is made easy by the sophisticated infrastructure of the Oracle Database,

including the following main elements:

• The Automatic Workload Repository (AWR) is a built-in repository in each Oracle database. At

regular intervals, the Oracle Database server takes a snapshot of all its vital statistics and workload

information and stores this data in the AWR. The captured data can be analyzed by you, by the

database server itself, or by both.

• Using automated tasks, the database server performs routine maintenance operations, such as

regular backups, refreshing optimizer statistics, and database health checks.

Reactive database maintenance includes critical errors and conditions discovered by database health

checkers:

• For problems that cannot be resolved automatically and require administrators to be notified

(such as running out of space), the Oracle Database server provides server-generated alerts. The

Oracle Database server, by default, monitors itself and sends out alerts to notify you of problems.

The alerts notify you and often also provide recommendations on how to resolve the reported

problem. The DBA can also be alerted by users whose transactions are locked by other users'

transactions and are waiting for locks to be released.

• Recommendations are generated from several advisors, each of whom is responsible for a

subsystem. For example, there are memory, segment, and SQL advisors.

Oracle Database 23c: Administration Workshop 26 - 6

Automatic Workload Repository (AWR)

• Built-in repository of performance information

• Snapshots of database metrics taken every 60 minutes and retained for eight days

• Foundation of all self-management functions

AWR

Snapshots

MMON

SGA

In-memory
statistics

60 minutes

The Automatic Workload Repository (AWR) is the infrastructure that provides services to Oracle Database

components to collect, maintain, and use statistics for problem detection and self-tuning purposes. You

can view it as a data warehouse for database statistics, metrics, and so on.

Every 60 minutes (by default), the database automatically captures statistical information from the SGA

and stores it in the AWR in the form of snapshots. These snapshots are stored on disk by a background

process called Manageability Monitor (MMON). By default, snapshots are retained for eight days. You can

modify both the snapshot interval and the retention interval.

The AWR contains hundreds of tables, all belonging to the SYS schema and stored in the SYSAUX

tablespace. Oracle recommends that the repository be accessed only through Enterprise Manager or the

DBMS_WORKLOAD_REPOSITORY package to work with the AWR. Direct data manipulation language (DML)

commands against the repository tables are not supported.

Oracle Database 23c: Administration Workshop 28 - 7

Automatic Database Diagnostic Monitor (ADDM)

• Runs after each AWR snapshot

• Monitors the instance, detects bottlenecks

• Stores results in the AWR

AWR

EM
ADDM
results

ADDM
Snapshots

Unlike the other advisors, the ADDM runs automatically after each AWR snapshot. Each time a snapshot

is taken, the ADDM performs an analysis of the period corresponding to the last two snapshots. The

ADDM proactively monitors the instance and detects most bottlenecks before they become a significant

problem.

Note: For the information to be valid, the instance should not have been shut down between the two

snapshots.

In many cases, the ADDM recommends solutions for detected problems and even quantifies the benefits

for the recommendations.

Some common problems that are detected by the ADDM are:

• CPU bottlenecks

• Poor Oracle Net connection management

• Lock contention

• Input/output (I/O) capacity

• Undersized database instance memory structures

• High-load SQL statements

The results of each ADDM analysis are stored in the AWR and are also accessible through Enterprise

Manager.

Oracle Database 23c: Administration Workshop 28 - 8

Configuring Automatic ADDM Analysis at the PDB Level

1. Enable PDB AWR snapshot creation on the CDB root and on each PDB:

2. Set the AWR snapshot interval to greater than 0 at the PDB level:

3. Execute the ADDM task (manually when required):

SQL> ALTER SYSTEM SET awr_pdb_autoflush_enabled = TRUE;

SQL> CONNECT sys@PDB1 AS SYSDBA

SQL> EXEC dbms_workload_repository.modify_snapshot_settings(interval => 60)

SQL> CONNECT sys@PDB1 AS SYSDBA

SQL> EXEC DBMS_ADDM.ANALYZE_DB(:tname, begin_snapshot =>1, end_snapshot =>2)

ADDM can run automatically on a PDB after AWR snapshots are enabled in the PDB. AWR snapshots are

not enabled by default on a PDB.

When AWR snapshots are enabled in a PDB and an ADDM analysis runs in the PDB, some parts of the

ADDM report and recommendations differ from the result of an ADDM execution in the CDB root. A PDB

analysis means that the ADDM task is analyzing the AWR data of a PDB, and only PDB-specific findings

and recommendations are produced. Enabling AWR snapshots on a PDB does not change the ADDM

report on a CDB root.

AWR snapshots on a PDB are stored in the PDB, in whichever tablespace is defined. No one can view PDB

snapshots from the CDB root for security purposes.

Oracle Database 23c: Administration Workshop 28 - 9

Advisory Framework

ADDM
SQL Tuning

Advisor

SQL Access
Advisor

Memory
Advisor

Space

SGA
Advisor

Segment Advisor

Undo Advisor

Buffer Cache
Advisor

Shared Pool
Advisor

Backup MTTR Advisor

Java Pool
Advisor

Streams Pool
Advisor

PGA
Advisor

Advisors provide you with useful feedback about resource utilization and performance for their respective

server components. For example, Memory Advisor provides a recommended value for the

MEMORY_TARGET initialization parameter, which controls the total amount of memory used by the Oracle

database instance.

By building on the data captured in the AWR, the ADDM enables the Oracle Database server to diagnose

its own performance and determine how identified problems can be resolved. ADDM runs automatically

after each AWR statistics capture. It can potentially call other advisors.

Here are the major benefits that are provided by the advisor infrastructure:

• All advisors use a uniform interface.

• All advisors have a common data source and results storage by using the workload repository.

Not all advisors are shown in the slide (for example, Data Recovery Advisor and SQL Repair Advisor are

not listed).

Automatic Database Diagnostic Monitor (ADDM)

The ADDM is a server-based expert that reviews database performance every 60 minutes. Its goal is to

detect possible system bottlenecks early and recommend fixes before system performance degrades

noticeably.

Oracle Database 23c: Administration Workshop 28 - 10

Memory Advisor

Memory Advisor is a collection of several advisory functions that help determine the best settings for the

total memory used by the database instance. The System Global Area (SGA) has a set of advisors for the

shared pool, database buffer cache, Java pool, and streams pool. The Java pool and streams pool

advisors are not exposed on the Enterprise Manager Memory Advisor page. There is an advisor for the

Program Global Area (PGA). In addition to the advisory functions, this advisor provides a central point of

control for the large pool and the Java pool.

Mean-Time-To-Recover (MTTR) Advisor

Using MTTR Advisor, you set the length of time required for the database to recover after an instance

crash.

Segment Advisor

This advisor looks for tables and indexes that consume more space than they require. The advisor checks

for inefficient space consumption at the tablespace or schema level and produces scripts to reduce space

consumption where possible.

SQL Access Advisor

This advisor analyzes all SQL statements that are issued in a given period and suggests the creation of

additional indexes, materialized views, or partitioning that will improve performance.

SQL Tuning Advisor

This advisor analyzes an individual SQL statement and makes recommendations for improving its

performance. Recommendations may include actions, such as rewriting the statement, changing the

instance configuration, or adding indexes.

Undo Management Advisor

With Undo Management Advisor, you can determine the undo tablespace size that is required to support

a given retention period. Undo management and the use of the advisor is covered in the lesson titled

“Managing Undo Data.”

Data Recovery Advisor

This advisor automatically diagnoses persistent data failures, presents repair options to the user, and

executes repairs at the user’s request. The purpose of Data Recovery Advisor is to reduce the mean time

to recover (MTTR) and provide a centralized tool for automated data repair.

SQL Repair Advisor

You run SQL Repair Advisor after a SQL statement fails with a critical error that generates a problem in

the Automatic Diagnostic Repository. The advisor analyzes the statement and, in many cases,

recommends a patch to repair the statement. If you implement the recommendation, the applied SQL

patch circumvents the failure by causing the query optimizer to choose an alternative execution plan for

future executions. This is done without changing the SQL statement itself.

Oracle Database 23c: Administration Workshop 28 - 11

Performance Tuning Methodology

System Health
and OS Statistics Top Down

Approach:
Design

Application
Database Instance

Tune Areas with
Greatest Benefit

Oracle has developed a tuning methodology based on years of experience. The basic steps are:

1. Check the OS statistics and general machine health before tuning the instance to be sure that the

problem is in the database.

2. Tune from the top down. Start with the design, then the application, and then the instance. For

example, try to eliminate full table scans that cause I/O contention before tuning the tablespace

layout on disk. This activity often requires access to the application code.

3. Tune the area with the greatest potential benefit. The tuning methodology presented in this

course is simple. Identify the biggest bottleneck and tune it. Repeat this step. All the various tuning

tools have some way to identify the SQL statements, resource contention, or services that are

taking the most time. The Oracle database provides a time model and metrics to automate the

process of identifying bottlenecks. The advisors available in Oracle Database use this

methodology.

4. Stop tuning when you meet your goal. This step implies that you set tuning goals.

This is a general approach to tuning the database instance and may require multiple passes.

Oracle Database 23c: Administration Workshop 28 - 12

Summary

Explain the Oracle performance tuning methodology

Describe the activities that you perform to manage database
performance

Oracle Database 23c: Administration Workshop 28 - 13

Monitoring Database Performance

Objectives

Describe the server statistics and metrics that are collected by the
Oracle Database server

Use performance views and tools to monitor database instance
performance

Oracle Database 23c: Administration Workshop 29 - 2

Server-Generated Alerts

Server
alerts

queue.

Metric exceeds
threshold.

AWR

Enterprise Manager

Oracle
instance

Alerts are notifications of when a database is in an undesirable state and needs your attention. By default,

the Oracle Database server provides alerts via Enterprise Manager. Optionally, Enterprise Manager can be

configured to send an email message to the administrator about problem conditions as well as display

alert information on the console.

You can also set thresholds on many of the pertinent metrics for your system. Oracle Database

proactively notifies you if the database deviates sufficiently from normal readings to reach those

thresholds. An early notification of potential problems enables you to respond quickly and, in many cases,

resolve issues before users even notice them.

Approximately 60 metrics are monitored by default, among which are:

• Broken Job Count

• Database Time Spent Waiting (%)

• Dump Area Used (%)

• SQL Response Time (%) Compared to Baseline

• Tablespace Used (%)

• Generic Incident

A few additional key metrics can provide early problem notification:

• Average File Read Time (centiseconds)

• Response Time (per transaction)

• Wait Time (%)

Oracle Database 23c: Administration Workshop 29 - 3

Setting Metric Thresholds

• View and change threshold settings for the server alert metrics by using:

‒ The GET_THRESHOLD and SET_THRESHOLD procedures of the

DBMS_SERVER_ALERT PL/SQL package

‒ The Metric and Collection Settings page in Enterprise Manager Cloud Control

You can set a desired warning and critical threshold values for a number of predefined metrics. The

appropriate alerts appear when the database reaches your specified values.

You can use the DBMS_SERVER_ALERT package, which enables you to view and change threshold

settings. Use the GET_THRESHOLD procedure to see the current threshold settings for a specified metric.

Use the SET_THRESHOLD procedure to modify the threshold values. Refer to Oracle Database PL/SQL

Packages and Types Reference for a complete list of supported metrics and parameters for each

procedure.

You can also use the Metric and Collection Settings page in Enterprise Manager Cloud Control to view and

set thresholds. The thresholds that are already set appear in the “Metrics with thresholds” list. By default,

approximately 60 metrics have preset thresholds; you may change these as needed. The “All metrics” list

shows the metrics that do not have thresholds set.

You can also change the scheduled collection interval for a specific collection schedule. Be aware that

each schedule affects a group of metrics.

Oracle Database 23c: Administration Workshop 29 - 4

Reacting to Alerts

• If necessary, you should gather more input (for example, by running ADDM or

another advisor).

• Investigate critical errors.

• Take corrective measures.

• Acknowledge alerts that are not automatically cleared.

When you receive an alert, follow the recommendations that it provides. You can also consider running

the ADDM (or another advisor as appropriate) to obtain more detailed diagnostics of system or object

behavior.

Alerts and incidents are generated for critical errors. Critical errors usually generate incidents that are

collected into problems.

Most alerts (such as “Out of Space”) are cleared automatically when the cause of the problem disappears.

However, other alerts (such as Generic Alert Log Error) are sent to you for notification and must be

acknowledged by you. After taking the necessary corrective measures, you acknowledge an alert by

clearing or purging it. Clearing an alert sends the alert to the Alert History, which is accessible from the

Monitoring submenu. Purging an alert removes it from the Alert History.

Oracle Database 23c: Administration Workshop 29 - 5

Alert Types and Clearing Alerts

MMON

85% Warning

97% Critical Cleared

Cleared

Metric-based

Event-based

Threshold
(stateful)

alerts

Alert

Snapshot
Too Old

Resumable
Session

Suspended

Recovery Area
Low On

Free Space
Nonthreshold

(stateless)
alerts

DBA_OUTSTANDING_ALERTS DBA_ALERT_HISTORY

There are two kinds of server-generated alerts: threshold and nonthreshold.

Most server-generated alerts are configured by setting a warning and critical threshold values on

database metrics. You can define thresholds for more than 120 metrics, including the following:

• Physical Reads Per Sec

• User Commits Per Sec

• SQL Service Response Time

Except for the Tablespace Space Usage metric, which is database-related, the other metrics are instance-

related. Threshold alerts are also referred to as stateful alerts, which are automatically cleared when an

alert condition clears. Stateful alerts appear in DBA_OUTSTANDING_ALERTS and, when cleared, go to

DBA_ALERT_HISTORY.

Other server-generated alerts correspond to specific database events, such as ORA-* errors, “Snapshot

too old” errors, Recovery Area Low On Free Space, and Resumable Session Suspended. These are non-

threshold-based alerts, also referred to as stateless alerts. Stateless alerts go directly to the History table.

Oracle Database 23c: Administration Workshop 29 - 6

Database Server Statistics and Metrics

Cumulative statistics:

• Wait events with time
information

• Time model

Metrics: Statistic rates

Sampled statistics:

• Active session history

• Statistics by session,
SQL, and service

• Other dimensions

The Oracle Database server software captures information about its own operation. Three major types of

data are collected: cumulative statistics, metrics, and sampled statistics.

Cumulative statistics are counts and timing information of a variety of events that occur in the database

server. Some are quite important, such as buffer busy waits. Others have little impact on tuning, such as

index block split. The most important events for tuning are usually the ones showing the greatest

cumulative time values. The statistics in Oracle Database are correlated by the use of a time model. The

time model statistics are based on a percentage of DB time, giving them a common basis for comparison.

Metrics are statistic counts per unit. The unit could be time (such as seconds), transaction, or session.

Metrics provide a base to proactively monitor performance. You can set thresholds on a metric, causing

an alert to be generated. For example, you can set thresholds for when the reads per millisecond exceed a

previously recorded peak value or when the archive log area is 95% full.

Sampled statistics are gathered automatically when STATISTICS_LEVEL is set to TYPICAL or ALL.

Sampled statistics allow you to look back in time. You can view session and system statistics that were

gathered in the past, in various dimensions, even if you had not thought of specifying data collection for

these beforehand.

Oracle Database 23c: Administration Workshop 29 - 7

Instance/Database
V$DATABASE

V$INSTANCE

V$PARAMETER

V$SPPARAMETER

V$SYSTEM_PARAMETER

V$PROCESS

V$BGPROCESS

V$PX_PROCESS_SYSSTAT

V$SYSTEM_EVENT

Performance Monitoring

• Enterprise Manager

Database Express

• Enterprise Manager

Cloud Control

• Performance views

Disk
V$DATAFILE

V$FILESTAT

V$LOG

V$LOG_HISTORY

V$DBFILE

V$TEMPFILE

V$TEMPSEG_USAGE

V$SEGMENT_STATISTICS

Contention
V$LOCK

V$UNDOSTAT

V$WAITSTAT

V$LATCH

Memory
V$BUFFER_POOL_STATISTICS

V$LIBRARYCACHE

V$SGAINFO

V$PGASTAT

You can respond to changes in performance only if you know the performance has changed. Oracle

Database provides several ways to monitor the current performance of the database instance.

• Enterprise Manager Database Express: The database home page provides a quick check of the

health of the instance and the server, with graphs showing CPU usage, active sessions, memory,

and data storage usage. The home page also shows any alerts that have been triggered.

Additional details are available on the Performance Hub page. As mentioned earlier in the lesson,

ADDM analysis results are accessible through Enterprise Manager.

• Enterprise Manager Cloud Control: Enterprise Manager Cloud Control also provides

performance monitoring capabilities.

• Performance views: You can access these views directly with SQL*Plus. Occasionally, you may

need to access these views for some details about the raw statistics.

See Oracle Database Performance Tuning Guide and Oracle Database Reference for details and examples.

Oracle Database 23c: Administration Workshop 29 - 8

To effectively diagnose performance problems, statistics must be available. The Oracle Database server

generates many types of cumulative statistics for the system, sessions, and individual SQL statements at the

instance level. The Oracle Database server also tracks cumulative statistics on segments and services. When

analyzing a performance problem in any of these scopes, you typically look at the change in statistics (delta

value) over the period of time you are interested in.

Note: Instance statistics are dynamic and are reset at every instance startup. These statistics can be captured

at a point in time and held in the database in the form of snapshots.

Wait Event Statistics

All possible wait events are cataloged in the V$EVENT_NAME view.

Cumulative statistics for all sessions are stored in V$SYSTEM_EVENT,which shows the total waits for a

particular event since instance startup.

When you are troubleshooting, you need to know whether a process has waited for any resource.

Systemwide Statistics

All systemwide statistics are cataloged in the V$STATNAME view. Over 400 statistics are available in Oracle

Database.

The server displays all calculated system statistics in the V$SYSSTAT view. You can query this view to find

cumulative totals since the instance started.

Systemwide statistics are classified by the tuning topic and the debugging purpose. The classes include

general instance activity, redo log buffer activity, locking, database buffer cache activity, and so on. Each of the

system statistics can belong to more than one class, so you cannot do a simple join on V$SYSSTATS.CLASS

and V$SYSTEM_WAIT_CLASS.WAIT_CLASS#.

You can also view all wait events for a particular wait class by querying V$SYSTEM_WAIT_CLASS.

Viewing Statistics Information

V$SGASTAT

• POOL

• NAME

• BYTES

V$SYSSTAT

• STATISTIC#

• NAME

• CLASS

• VALUE

• STAT_ID

V$SYSTEM_EVENT

• EVENT

• TOTAL_WAITS

• TOTAL_TIMEOUTS

• TIME_WAITED

• AVERAGE_WAIT

• TIME_WAITED_MICRO

V$EVENT_NAME

• EVENT_NUMBER

• EVENT_ID

• NAME

• PARAMETER1

• PARAMETER2

• PARAMETER3

• WAIT_CLASS

V$SYSTEM_WAIT_CLASS

• WAIT_CLASS_ID

• WAIT_CLASS#

• WAIT_CLASS

• TOTAL_WAITS

• TIME_WAITED

Oracle Database 23c: Administration Workshop 29 - 9

SGA Global Statistics

The server displays all calculated memory statistics in the V$SGASTAT view. You can query this view to

find cumulative totals of detailed SGA usage since the instance started.

When the STATISTICS_LEVEL parameter is set to BASIC, the value of the TIMED_STATISTICS

parameter defaults to FALSE. Timing information is not collected for wait events, and much of the

performance-monitoring capability of the database is disabled. The explicit setting of

TIMED_STATISTICS overrides the value derived from STATISTICS_LEVEL.

Oracle Database 23c: Administration Workshop 29 - 10

Monitoring Wait Events

Wait events: Statistics indicating the server
process had to wait for an event to complete

V$EVENT_NAME

Request

Response

Wait events are statistics that are incremented by a server process or thread to indicate that it had to wait

for an event to complete before being able to continue processing. Wait event data reveals various

symptoms of problems that might be impacting performance, such as latch contention, buffer

contention, and I/O contention. Remember that these are only symptoms of problems, not the actual

causes.

A collection of wait events provides information about the sessions or processes that had to wait or must

wait for different reasons.

Wait events are grouped into classes. The wait event classes include Administrative, Application, Cluster,

Commit, Concurrency, Configuration, Idle, Network, Other, Scheduler, System I/O, and User I/O.

Wait events are listed in the V$EVENT_NAME view. There are more than 800 wait events in the Oracle

Database, including free buffer wait, latch free, buffer busy waits, DB file sequential read, and DB file

scattered read.

Oracle Database 23c: Administration Workshop 29 - 11

You can display current session information for each user logged on by querying V$SESSION. For

example, you can use V$SESSION to determine whether a session represents a user session or was

created by a database server process (background).

You can query either V$SESSION or V$SESSION_WAIT to determine the resources or events for which

active sessions are waiting.

You can view user session statistics in V$SESSTAT. The V$SESSION_EVENT view lists information about

waits for an event by session.

Cumulative values for instance statistics are generally available through dynamic performance views,

such as V$SESSTAT and V$SYSSTAT. Note that the cumulative values in dynamic views are reset when

the database instance is shut down.

The V$MYSTAT view displays the statistics of the current session.

You can also query V$SESSMETRIC to display performance metric values for all active sessions. This view

lists performance metrics, such as CPU usage, number of physical reads, number of hard parses, and the

logical read ratio.

Monitoring Sessions

V$STATNAME

• STATISTIC#

• NAME

• CLASS

• STAT_ID

• DISPLAY_NAME

• CON_ID

V$SESSTAT

• SID

• STATISTIC#

• VALUE

• CON_ID

V$SESSION

• SADDR

• SID

• …

• EVENT#

• EVENT

• P1/2/3TEXT

• P1/2/3

• P1/2/3RAW

• WAIT_CLASS

• WAIT_TIME

• SECONDS_IN_WAIT

• STATE

• …

V$SESSION_EVENT

• SID

• EVENT

• TOTAL_WAITS

• TOTAL_TIMEOUTS

• TIME_WAITED

• AVERAGE_WAIT

• MAX_WAIT

• TIME_WAITED_MICRO

• EVENT_ID

• …

V$EVENT_NAME

• EVENT#

• EVENT_ID

• NAME

• PARAMETER1

• PARAMETER2

• PARAMETER3

• …

Oracle Database 23c: Administration Workshop 29 - 12

Monitoring Services

Service

DBMS_SERVICE.CREATE_SERVICE

V$SERVICE_WAIT_CLASS

V$SERVICE_EVENT

In a multi-tier environment where there is an application server that is pooling database connections,

viewing sessions may not provide the information you need to analyze performance. Grouping sessions

into service names enables you to monitor performance more accurately. Regardless of the session that

was used for a particular request, if it connected via one of these services, the performance data of the

session is captured under that service name.

You can define a service in the database by using the DBMS_SERVICE package and can use the net

service name to assign applications to a service.

Two views provide the same information that their like-named session counterparts provide, except that

the information is presented at the service level rather than at the session level.

• V$SERVICE_WAIT_CLASS shows wait statistics for each service, broken down by wait class.

• V$SERVICE_EVENT shows the same information as V$SERVICE_WAIT_CLASS, except that it is

further broken down by event ID.

Oracle Database 23c: Administration Workshop 29 - 13

Summary

Describe the server statistics and metrics that are collected by the
Oracle Database server

Use performance views and tools to monitor database instance
performance

Oracle Database 23c: Administration Workshop 29 - 14

Analyzing SQL and Optimizing Access Paths

Objectives

Manage optimizer statistics

Use SQL Access Advisor to tune a workload

Describe the SQL tuning methodology

Use SQL Tuning Advisor to identify and tune SQL statements that are
using the most resources

Oracle Database 23c: Administration Workshop 30 - 2

SQL Tuning Process

1. Identify poorly tuned SQL statements: Generally, the tuning effort that yields the most benefit is

SQL tuning. Poorly tuned SQL uses more resources than required. This inefficiency prevents

scalability, uses more OS and database resources, and increases response time. To tune poorly

tuned SQL statements, they must be identified and then tuned. SQL statements can be tuned

individually, but often the solution that optimizes one statement can hurt the performance of several

others. The SQL statements that use the most resources are, by definition, the statements in need of

tuning. These are statements that have the longest elapsed time, use the most CPU, or do the most

physical or logical reads. Automatic Database Diagnostic Monitor (ADDM) can detect high-load SQL

statements.

2. Tune the individual statements: Tune the individual statements by checking the optimizer

statistics; check the explain plan for the most efficient access path; test alternative SQL

constructions; and test possible new indexes, materialized views, and partitioning. SQL Tuning

Advisor and SQL Access Advisor, described later in this lesson, can help with this task.

3. Tune the application as a whole: Test the application as a whole by using the tuned SQL

statements. Is the overall performance better?

The methodology is sound, but tedious. Tuning an individual statement is not difficult. Testing the overall

impact of the individual statement tuning on an application can be very difficult.

SQL Tuning Process

1. Identify poorly tuned SQL statements.

2. Tune the individual SQL statements.

3. Tune the application as a whole.

ADDM

SQL Tuning
Advisor

SQL Access
Advisor

Oracle Database 23c: Administration Workshop 30 - 3

Oracle Optimizer

The optimizer is the part of the Oracle Database server that creates the execution plan for a SQL

statement. The determination of the execution plan is an important step in the processing of any SQL

statement and can greatly affect execution time.

The execution plan is a series of operations that are performed in sequence to execute the statement.

The optimizer considers many factors related to the referenced objects and the conditions specified in

the query. The information necessary for the optimizer includes:

• Statistics gathered for the system (I/O, CPU, and so on) as well as schema objects (number of

rows, index, and so on)

• Information in the dictionary

• WHERE clause qualifiers

• Hints supplied by the developer

The optimizer:

• Evaluates expressions and conditions

• Uses object and system statistics

• Decides how to access the data and join tables

• Determines the most efficient path

When you use diagnostic tools, such as Enterprise Manager, EXPLAIN PLAN, and SQL*Plus AUTOTRACE,

you can see the execution plan that the optimizer chooses.

Oracle Database 23c: Administration Workshop 30 - 4

Optimizer Statistics

Optimizer statistics include table, column, index, and system statistics. Statistics for tables and indexes

are stored in the data dictionary. These statistics are not intended to provide real-time data. They provide

the optimizer a statistically correct snapshot of data storage and distribution, which the optimizer uses to

make decisions on how to access data.

The statistics that are collected include:

• Size of the table or index in database blocks

• Number of rows

• Average row size and chain count (tables only)

• Height and number of deleted leaf rows (indexes only)

• Number of distinct values for each column

• Number of distinct indexed values (indexes only)

As data is inserted, deleted, and modified, these statistics change. Because the performance impact of

maintaining real-time data distribution statistics is prohibitive, these statistics are updated by periodically

gathering statistics on tables and indexes.

Optimizer statistics are collected automatically by an automatic maintenance job that runs during

predefined maintenance windows once daily by default. System statistics are operating system

characteristics that are used by the optimizer. These statistics are not collected automatically. For details

about collecting system statistics, see the Oracle Database Performance Tuning Guide.

Optimizer statistics are not the same as the database performance statistics that are gathered in the

Automatic Workload Repository (AWR) snapshot.

Oracle Database 23c: Administration Workshop 30 - 5

Optimizer Statistics Collection

Optimizer statistics are collections of data that are specific details about database objects. These statistics

are essential for the query optimizer to choose the best execution plan for each SQL statement. These

statistics are gathered periodically and do not change between gatherings.

Statistics can be collected in the following ways:

• Automatically: Automatic Maintenance Tasks

• Manually: DBMS_STATS package

• By setting database initialization parameters

• By importing statistics from another database

• By configuring high-frequency automatic optimizer statistics collection to complement the

standard statistics collection job

The recommended approach to gathering optimizer statistics is to allow the Oracle Database server to

automatically gather the statistics. Automatic Maintenance Tasks can be created automatically at

database creation time and are managed by the Scheduler. They gather statistics on all objects in the

database that have either missing or stale optimizer statistics by default. You can change the default

configuration through the Automatic Maintenance Tasks page.

System statistics describe the system’s hardware characteristics, such as I/O and CPU performance and

utilization, to the query optimizer. When choosing an execution plan, the optimizer estimates the I/O and

CPU resources required for each query. System statistics enable the query optimizer to more accurately

estimate I/O and CPU costs and, thereby, choose a better execution plan. System statistics are collected

by using the DBMS_STATS.GATHER_SYSTEM_STATS procedure. When the Oracle Database server

gathers system statistics, it analyzes system activity in a specified period of time. System statistics are not

automatically gathered. Oracle Corporation recommends that you use the DBMS_STATS package to

gather system statistics.

Oracle Database 23c: Administration Workshop 30 - 6

• If you choose not to use automatic statistics gathering, you must manually collect statistics in all

schemas, including system schemas. If the data in your database changes regularly, you also need

to gather statistics regularly to ensure that the statistics accurately represent characteristics of

your database objects. To manually collect statistics, use the DBMS_STATS package. This PL/SQL

package is also used to modify, view, export, import, and delete statistics.

• You can also manage optimizer and system statistics collection through database initialization

parameters. For example:

– The OPTIMIZER_DYNAMIC_SAMPLING parameter controls the level of dynamic sampling

performed by the optimizer. You can use dynamic sampling to estimate statistics for tables

and relevant indexes when they are not available or are too out of date to trust. Dynamic

sampling also estimates single-table predicate selectivity when collected statistics cannot be

used or are likely to lead to significant errors in estimation.

– The STATISTICS_LEVEL parameter controls all major statistics collections or advisories in the

database and sets the statistics collection level for the database. The values for this parameter

are BASIC, TYPICAL, and ALL. You can query the V$STATISTICS_LEVEL view to determine

which parameters are affected by the STATISTICS_LEVEL parameter.

Note: Setting STATISTICS_LEVEL to BASIC disables many automatic features and is not

recommended.

Oracle Database 23c: Administration Workshop 30 - 7

Setting Optimizer Statistics Preferences

DBMS_STATS.GATHER_*_STATS procedures: Gather statistics for an
entire database or for individual objects using default values.

Use the SET_*_PREFS procedures to create preference values for any
object that is not owned by SYS or SYSTEM.

Query DBA_TAB_STAT_PREFS to view object-level preferences.

Execute the DBMS_STATS.GET_PREFS procedure for each preference to
see the global preferences.

The DBMS_STATS.GATHER_*_STATS procedures can be called at various levels to gather statistics for an

entire database or for individual objects, such as tables. When the GATHER_*_STATS procedures are

called, several of the parameters are often allowed to default. The supplied defaults work well for most of

the objects in the database, but for some objects or schemas, the defaults need to be changed. Instead of

running manual jobs for each of these objects, Oracle Database enables you to set values (called

preferences) for individual objects, schemas, or databases or change the default values with a global-level

command.

The preferences specify the parameters that are given to the gather procedures. The SET_*_PREFS

procedures create preference values for any object that is not owned by SYS or SYSTEM. The expected

use is that the DBA will set the global preferences for any parameters that should be databasewide. These

will be applied to any parameter that is allowed to default.

The SET_DATATBASE_PREFS procedure iterates over all the tables and schemas in the database, setting

the specified preference. SET_SCHEMA_PREFS iterates over the tables in the specified schema.

SET_TABLE_PREFS sets the preference value for a single table.

All object preferences—whether set at the database, schema, or table level—are held in a single table.

Changing preferences at the schema level overwrites the preferences that were previously set at the table

level.

When the various gather procedures execute, they retrieve the object-level preferences that were set for

each object. You can view the object-level preferences in the DBA_TAB_STAT_PREFS view. Any

preferences that are not set at the object level will be set to the global level. You can see the global

preferences by calling the DBMS_STATS.GET_PREFS procedure for each preference.

Oracle Database 23c: Administration Workshop 30 - 8

For details about these preferences, see the DBMS_STATS documentation in the Oracle Database PL/SQL

Packages and Types Reference.

Preferences may be deleted with the DBMS_STATS.DELETE_*_PREFS procedures at the table, schema,

and database levels. You can reset the global preferences to the recommended values with the

DBMS_STATS.RESET_PARAM_DEFAULTS procedure.

Oracle Database 23c: Administration Workshop 30 - 9

Optimizer Statistics Advisor

• If best practices change in a new release, Optimizer Statistics Advisor encodes these

practices in its rules.

• The advisor always provides the most up-to-date recommendations.

• Track and analyze how statistics are collected.

‒ Class of findings: System, Operations, Objects

• Scope of findings

‒ Problems with gathering of statistics

‒ Status of automatic statistic gathering jobs

‒ Quality of current statistics

• Suggestion for changes to the statistics collection

Since the introduction of the cost-based optimizer, optimizer statistics play a significant part in

determining the execution plan for queries. Therefore, it is critical for the optimizer to have accurate and

up-to-date statistics. The DBMS_STATS package serves this purpose and is improved in every release by

adding new features. However, under many circumstances, these new features have not been fully

utilized by customers or are being used in incorrect ways. Customers often use scripts and settings from

one release to the next, based on earlier experience. These settings and methods may have been

superseded or produce statistics that no longer give the most effective optimizer results.

Optimizer Statistics Advisor uses rules consistent with the current release to recommend changes to the

way statistics are being gathered.

The advisor has a set of rules or recommended practices that are compared against the current statistics

to generate findings. The rules are applied at the system, operation, or object level, such as whether the

Automatic Gather Statistics jobs are scheduled, the statistics gathering procedures are using default

parameters, and statistics are consistent across related objects. These rules check on issues related to the

gathering of statistics—the schedules, parameters, and errors related to the automatic statistics gathering

jobs. The rules include a variety of object-related issues, including whether the incremental mode setting

is efficient.

Oracle Database 23c: Administration Workshop 30 - 10

Optimizer Statistics Advisor Report

• Report sections:

‒ Header

‒ Summary

‒ Errors

‒ Findings

Rules Findings
Recommendations

Actions

The Optimizer Statistics Advisor report has four basic concepts:

• Rules: Check the current configuration, history, and current statistics. Rules are added and

changed by release to reflect best practices.

• Findings: They are generated when rules are not followed. An individual rule may generate many

findings, but each finding is generated by only one rule. Some findings may be informational only,

such as object staleness.

• Recommendations: They are responses the customer could make to resolve the finding. It is

possible that several recommendations could be generated, and further investigation would be

required by the customer. One or more rationales are given for each recommendation. Not all

findings generate recommendations.

• Actions: They are PL/SQL statements or commands that the user can simply run in the command

line to solve problems. They are provided in the form of scripts. Not all recommendations generate

actions. For some recommendations, it is not possible to generate an action.

The report has sections for header, summary, errors, and findings. The header includes the advisor task

parameters. The summary lists findings, and the errors section lists any errors the task encountered. The

findings section includes the rule, findings, recommendations, and actions for each rule that produces a

finding.

Oracle Database 23c: Administration Workshop 30 - 11

Executing Optimizer Statistics Advisor Tasks

DBA_ADVISOR_TASKS

DBA_ADVISOR_EXECUTIONS

DBA_ADVISOR_FINDINGS

DBA_ADVISOR_RECOMMENDATIONS

An Optimizer Statistics Advisor task can be executed with PL/SQL calls. Each task must be provided a

unique task name. The definitions of the CREATE_ADVISOR_TASK() function parameters are:

• TASK_NAME: Name of the Statistics Advisor task

• TIME_LIMIT: The maximum duration the task can run

A filter list can be applied to the task to limit the scope of an advisor task using inclusion or exclusion lists

for a user-specified set of rules, schemas, or operations. System rules are always checked. For example,

you can configure an advisor task to include only recommendations for the SH schema. Also, you could

exclude all violations of the rule for stale statistics.

You can create filters with the following DBMS_STATS procedures either individually or in combination:

CONFIGURE_ADVISOR_OBJ_FILTER, CONFIGURE_ADVISOR_RULE_FILTER, and

CONFIGURE_ADVISOR_OPR_FILTER. An Optimizer Statistics Advisor report can be generated with

PL/SQL calls. The REPORT_ADVISOR_TASK function produces a report in text, HTML, or XML format.

IMPLEMENT_ADVISOR_TASK implements the recommendations of the task based on the filters in place.

An additional parameter, LEVEL, can be set to either TYPICAL or ALL. TYPICAL is the default. ALL

ignores the filters.

Oracle Database 23c: Administration Workshop 30 - 12

SQL Plan Directives

Plan Directive

Collect missing statistics.

Create column group statistics.

Perform dynamic sampling.

Optimizer

Execution Plan

The Oracle Database server can use a SQL plan directive, which is additional information and instructions

that the optimizer can use to generate a more optimal plan. For example, a SQL plan directive might

instruct the optimizer to collect missing statistics, create column group statistics, or perform dynamic

sampling. During SQL compilation or execution, the database analyzes the query expressions that are

missing statistics or that misestimate optimizer cardinality to create SQL plan directives. When the

optimizer generates an execution plan, the directives give the optimizer additional information about

objects that are referenced in the plan.

SQL plan directives are not tied to a specific SQL statement or SQL ID. The optimizer can use SQL plan

directives for SQL statements that are nearly identical because SQL plan directives are defined on a query

expression. For example, directives can help the optimizer with queries that use similar patterns, such as

web-based queries that are the same except for a select list item. The database stores SQL plan directives

persistently in the SYSAUX tablespace. When generating an execution plan, the optimizer can use SQL

plan directives to obtain more information about the objects that are accessed in the plan.

Directives are automatically maintained, created as needed, and purged if not used after a year.

Directives can be monitored in DBA_SQL_PLAN_DIR_OBJECTS. SQL plan directives improve plan

accuracy by persisting both compilation and execution statistics in the SYSAUX tablespace, allowing them

to be used by multiple SQL statements.

Oracle Database 23c: Administration Workshop 30 - 13

Adaptive Execution Plans

Adaptive
Query

Optimization

Adaptive Plans
Adaptive
Statistics

Join
Methods

Parallel
Distribution

Methods

Automatic
Reoptimization

Dynamic
Statistics

SQL Plan
Directives

The Adaptive Execution Plans feature enables the optimizer to automatically adapt a poorly performing

execution plan at run time and prevent a poor plan from being chosen on subsequent executions. The

optimizer instruments its chosen plan so that at run time, it can be detected if the optimizer’s estimates

are not optimal. Then the plan can be automatically adapted to the actual conditions. An adaptive plan is

a plan that changes after optimization when optimizer estimates prove inaccurate.

The optimizer can adapt plans based on statistics that are collected during statement execution. All

adaptive mechanisms can execute a plan that differs from the plan that was originally determined during

hard parse. This improves the ability of the query-processing engine (compilation and execution) to

generate better execution plans.

The two Adaptive Execution Plan techniques are:

• Dynamic plans: A dynamic plan chooses among subplans during statement execution. For

dynamic plans, the optimizer must decide which subplans to include in a dynamic plan, which

statistics to collect to choose a subplan, and thresholds for this choice.

• Re-optimization: In contrast, re-optimization changes a plan for executions after the current

execution. For re-optimization, the optimizer must decide which statistics to collect at which points

in a plan and when re-optimization is feasible.

Note: OPTIMIZER_ADAPTIVE_REPORTING_ONLY controls reporting-only mode for adaptive

optimizations. When set to TRUE, adaptive optimizations run in reporting-only mode where the

information required for an adaptive optimization is gathered, but no action is taken to change the plan.

Oracle Database 23c: Administration Workshop 30 - 14

The optimizer can pick the best-performing plan during any execution of the statement, not just the first

execution. If the underlying data changes, or if queries re-execute with different input data, then the

optimizer can adapt its plan to match the statistics gathered in the current execution. The continuous

adaptive query plan adapts for every execution of the same cursor instead of only once.

Oracle Database 23c: Administration Workshop 30 - 15

SQL Tuning Advisor is the primary driver of the tuning process. It performs several types of analyses:

• Statistics Analysis: Checks each query object for missing or stale statistics and makes

recommendations to gather relevant statistics

• SQL Profiling: The optimizer verifies its own estimates and collects auxiliary information to

remove estimation errors. It builds a SQL profile by using the auxiliary information and makes a

recommendation to create it. When a SQL profile is created, it enables the query optimizer to

generate a well-tuned plan.

• Access Path Analysis: New indexes are considered if they significantly improve access to each

table in the query. When appropriate, recommendations to create such objects are made.

• SQL Structure Analysis: SQL statements that use bad plans are identified and relevant

suggestions are made to restructure them. The suggested changes can be syntactic as well as

semantic.

SQL Tuning Advisor considers each SQL statement included in the advisor task independently. Creating a

new index may help a query, but may hurt the response time of DML. So, a recommended index or other

object should be checked with SQL Access Advisor over a workload (a set of SQL statements) to

determine whether there is a net gain in performance.

SQL Tuning Advisor runs automatically every night as the Automatic SQL Tuning Task. There may be

times when a SQL statement needs immediate tuning action. You can use SQL Tuning Advisor to analyze

SQL statements and obtain performance recommendations at any time. Typically, you run this advisor as

an ADDM performance-finding action.

SQL Tuning Advisor: Overview

Add missing index

Restructure SQL

Tune SQL plan
(SQL profile)

Detect stale or missing
statistics

Comprehensive SQL tuning

SQL Tuning
Advisor

Oracle Database 23c: Administration Workshop 30 - 16

Additionally, you can run SQL Tuning Advisor when you want to analyze the top SQL statements

consuming the most CPU time, I/O, and memory.

Even though you can submit multiple statements to be analyzed in a single task, each statement is

analyzed independently. To obtain tuning recommendations that consider the overall performance of a

set of SQL, use SQL Access Advisor.

Oracle Database 23c: Administration Workshop 30 - 17

SQL Access Advisor can recommend the proper set of materialized views, materialized view logs,

partitioning, and indexes for a given workload. Understanding and using these structures is essential

when optimizing SQL because they can result in significant performance improvements in data retrieval.

SQL Access Advisor recommends bitmap, function-based, and B-tree indexes. A bitmap index offers a

reduced response time for many types of ad hoc queries and reduced storage requirements compared to

other indexing techniques. B-tree indexes are most commonly used in a data warehouse to index unique

or near-unique keys.

Another component of SQL Access Advisor also recommends how to optimize materialized views so that

they can be fast refreshable and take advantage of general query rewrite.

Note: For more information about materialized views and query rewrite, see Oracle Database

Performance Tuning Guide.

SQL Access Advisor: Overview

SQL Access
Advisor

Recommendations

• Indexes

• Materialized views

• Materialized view logs

• Partitioning

Workload specification

• SQL statement

• SQL Tuning Set

• SQL cache contents

• Statistics

• Schema name

Oracle Database 23c: Administration Workshop 30 - 18

Oracle Database includes SQL Performance Analyzer, which gives you an exact and accurate assessment

of the impact of change on the SQL statements that make up the workload. SQL Performance Analyzer

helps you forecast the impact of a potential change on the performance of a SQL query workload. This

capability provides you with detailed information about the performance of SQL statements, such as

before-and-after execution statistics, and statements with performance improvement or degradation.

This enables you (for example) to make changes in a test environment to determine whether the

workload performance will be improved through a database upgrade.

SQL Performance Analyzer includes the following capabilities:

• Helps predict the impact of system changes on SQL workload response time

• Builds different versions of SQL workload performance (that is, SQL execution plans and

execution statistics)

• Executes SQL serially (concurrency not honored)

• Analyzes performance differences

• Offers fine-grained performance analysis on individual SQL

• Is integrated with SQL Tuning Advisor to tune regressions

SQL Performance Analyzer: Overview

Analyzes performance
differences

Offers fine-grained
performance analysis

on individual SQL

Executes SQL serially

Builds different
versions of SQL

workload performance

Predicts the impact of system changes

SQL
Performance

Analyzer

Oracle Database 23c: Administration Workshop 30 - 19

Use Cases

SQL Performance Analyzer can be used to predict and prevent potential performance problems for any

database environment change that affects the structure of SQL execution plans. The changes can include

(but are not limited to) any of the following:

• Database upgrades

• Implementation of tuning recommendations

• Schema changes

• Statistics gathering

• Database parameter changes

• OS and hardware changes

You can use SQL Performance Analyzer to predict SQL performance changes that result from changes for

even the most complex environments. As applications evolve through the development life cycle,

database application developers can test changes to schemas, database objects, and rewritten

applications to mitigate any potential performance impact.

SQL Performance Analyzer also enables the comparison of SQL performance statistics.

You can access SQL Performance Analyzer through Enterprise Manager or by using the DBMS_SQLPA

package.

For details about the DBMS_SQLPA package, see the Oracle Database PL/SQL Packages and Types

Reference Guide.

Oracle Database 23c: Administration Workshop 30 - 20

Managing Automated Tuning Tasks

• Use the DBMS_AUTO_TASK_ADMIN.ENABLE procedure to manage automatic space

and performance tuning tasks.

• Set the CLIENT_NAME parameter to the following values based on the task:

‒ Automatic statistics collection: auto optimizer stats collection

‒ Automatic SQL Tuning task: sql tuning advisor

‒ Segment shrink: auto space advisor

BEGIN

DBMS_AUTO_TASK_ADMIN.ENABLE (

client_name => 'auto optimizer stats collection',

operation => NULL, window_name => NULL);

END;

To control the automatic segment shrink task, the automatic statistics collection, or the SQL Tuning

Advisor automated task, use the DBMS_AUTO_TASK_ADMIN.ENABLE procedure as shown in this

example:

BEGIN

DBMS_AUTO_TASK_ADMIN.ENABLE (

client_name => 'auto optimizer stats collection',

operation => NULL, window_name => NULL);

END;

See the Oracle Database SQL Tuning Guide for additional examples.

Oracle Database 23c: Administration Workshop 30 - 21

Summary

Manage optimizer statistics

Use SQL Access Advisor to tune a workload

Describe the SQL tuning methodology

Use SQL Tuning Advisor to identify and tune SQL statements that are
using the most resources

Oracle Database 23c: Administration Workshop 30 - 22

	Oracle Database 23ai: Administration Workshop - Student Guide
	Table of Contents
	Lesson I: Oracle Database 23c: Administration Workshop
	Target Audience
	Prerequisites
	Learning Outcomes
	Course Outline
	What’s Next?

	Lesson 1: Introduction to Oracle Database
	Objectives
	Oracle Database Server Architecture: Overview
	Oracle Database Instance Configurations
	Oracle Multitenant Container Database: Introduction
	Oracle Multitenant Container Database: Architecture
	Oracle Database Memory Structures
	Shared Pool
	Database Buffer Cache
	Redo Log Buffer
	Large Pool
	Java Pool and Streams Pool
	Program Global Area (PGA)
	Process Architecture
	Process Structures
	Database Writer Process (DBWn)
	Log Writer Process (LGWR)
	Checkpoint Process (CKPT)
	System Monitor Process (SMON)
	Process Monitor Process (PMON)
	Recoverer Process
	Archiver Processes (ARCn)
	Database Sharding: Introduction
	Oracle Database Server: Interactive Architecture Diagram
	Summary

	Lesson 2: Accessing an Oracle Database
	Objectives
	Connecting to an Oracle Database Instance
	Oracle Database Tools
	Database Tool Choices
	SQL*Plus
	Oracle SQL Developer
	Oracle SQL Developer: Connections
	Oracle SQL Developer: DBA Actions
	Database Configuration Assistant (DBCA)
	Oracle Enterprise Manager Database Express
	Enterprise Manager Cloud Control 13c Features
	Oracle Enterprise Manager Component Overview
	Single Pane of Glass for Enterprise Management
	Oracle Enterprise Manager Database Management
	Summary

	Lesson 3: Creating an Oracle Database by Using DBCA
	Objectives
	Planning the Database
	Choosing a Database Template
	Choosing the Appropriate Character Set
	How are character sets used?
	Setting NLS_LANG Correctly on the Client
	Using the Database Configuration Assistant
	Using DBCA in Silent Mode
	Summary

	Lesson 4: Creating an Oracle Database by Using a SQL Command
	Objectives
	Creating a Container Database (CDB)
	Creating a CDB by Using a SQL Command: Example
	Using the SEED FILE_NAME_CONVERT Clause
	Using the ENABLE PLUGGABLE DATABASE Clause
	Summary

	Lesson 5: Starting Up and Shutting Down a Database Instance
	Objectives
	Starting the Oracle Database Instance
	Shutting Down an Oracle Database Instance
	Comparing SHUTDOWN Modes
	Opening and Closing PDBs
	Configuring PDBs to Automatically Open
	Summary

	Lesson 6: Managing Database Instances
	Objectives
	Working with Initialization Parameters
	Initialization Parameters
	Modifying Initialization Parameters
	Viewing Initialization Parameters
	Working with the Automatic Diagnostic Repository
	Automatic Diagnostic Repository
	Viewing the Alert Log
	Using Trace Files
	Administering the DDL Log File
	Querying Dynamic Performance Views
	Considerations for Dynamic Performance Views
	Data Dictionary: Overview
	Querying the Oracle Data Dictionary
	Summary

	Lesson 7: Oracle Net Services: Overview
	Objectives
	Connecting to the Database Instance
	Oracle Net Services: Overview
	Defining Oracle Net Services Components
	Tools for Configuring and Managing Oracle Net Services
	Oracle Net Listener: Overview
	The Default Listener
	Comparing Dedicated and Shared Server Architecture
	Summary

	Lesson 8: Configuring Naming Methods
	Objectives
	Establishing Oracle Network Connections
	Connecting to an Oracle Database Instance
	Name Resolution
	Establishing a Connection
	User Sessions
	Naming Methods
	Easy Connect
	Local Naming
	Directory Naming
	Using Database Services to Manage Workloads
	Creating Database Services
	Summary

	Lesson 9: Configuring and Administering the Listener
	Objectives
	Review: Oracle Net Services Overview
	Oracle Net Listener: Overview
	The Default Listener
	Configuring Dynamic Service Registration
	Configuring Static Service Registration
	Summary

	Lesson 10: Configuring a Shared Server Architecture
	Objectives
	Shared Server Architecture: Overview
	Comparing Dedicated and Shared Server Architecture: Review
	Enabling Shared Server
	Controlling Shared Server Operations
	SGA and PGA Usage
	Shared Server Configuration Considerations
	Summary
	Practice Overview

	Lesson 11: Creating PDBs from Seed
	Objectives
	Provisioning New Pluggable Databases
	Tools
	Creating a New PDB from PDB$SEED
	Using the FILE_NAME_CONVERT Clause
	Using OMF or the PDB_FILE_NAME_CONVERT Parameter
	Summary

	Lesson 12: Using Other Techniques to Create PDBs
	Objectives
	Cloning Regular PDBs
	Migrating Data from a Non-CDB into a CDB
	Plugging a Non-CDB into CDB Using DBMS_PDB
	Replicating a Non-CDB into a CDB by Using GoldenGate
	Cloning a Non-CDB or Remote PDB
	Using DBCA to Clone a Remote PDB
	Plugging an Unplugged Regular PDB into CDB
	Plugging in a PDB Using an Archive File
	Cloning Remote PDBs in Hot Mode
	Near-Zero Downtime PDB Relocation
	Using DBCA to Relocate a Remote PDB
	Proxy PDB: Query Across CDBs Proxying Root Replica
	Creating a Proxy PDB
	Summary

	Lesson 13: Managing PDBs
	Objectives
	Changing the PDB Mode
	Modifying PDB Settings
	Impact of Changing Initialization Parameters
	Changing Initialization Parameters: Example
	Using the ALTER SYSTEM Command in a PDB
	Configuring Host Name and Port Number per PDB
	Dropping PDBs
	Summary

	Lesson 14: Database Storage Overview
	Objectives
	Database Storage Architecture
	Logical and Physical Database Structures
	Segments, Extents, and Blocks
	Tablespaces and Data Files
	Default Tablespaces in a Multitenant Container Database
	SYSTEM and SYSAUX Tablespaces
	Types of Segments
	How Table Data Is Stored
	Database Block Content
	Understanding Deferred Segment Creation
	Controlling Deferred Segment Creation
	Monitoring Tablespace Space Usage
	Summary

	Lesson 15: Creating and Managing Tablespaces
	Objectives
	Creating Tablespaces
	Creating a Tablespace: Clauses
	Creating Permanent Tablespaces in a CDB
	Defining Default Permanent Tablespaces
	Temporary Tablespaces
	Altering and Dropping Tablespaces
	Viewing Tablespace Information
	Implementing Oracle Managed Files (OMF)
	Enlarging the Database
	Moving or Renaming Online Data Files
	Examples: Moving and Renaming Online Data Files
	Summary

	Lesson 16: Improving Space Usage
	Objectives
	Space Management Features
	Block Space Management
	Row Chaining and Migration
	Free Space Management Within Segments
	Allocating Extents
	Using Unusable Indexes
	Using Temporary Tables
	Creating Global Temporary Tables
	Creating Private Temporary Tables
	Table Compression: Overview
	Table Compression: Concepts
	Compression for Direct-Path Insert Operations
	Advanced Row Compression for DML Operations
	Specifying Table Compression
	Using the Compression Advisor
	Resolving Space Usage Issues
	Reclaiming Space by Shrinking Segments
	Shrinking Segments
	Results of a Shrink Operation
	Managing Resumable Space Allocation
	Using Resumable Space Allocation
	Resuming Suspended Statements
	What operations are resumable?
	Summary

	Lesson 17: Managing Undo Data
	Objectives
	Undo Data: Overview
	Transactions and Undo Data
	Storing Undo Information
	Comparing Undo Data and Redo Data
	Managing Undo
	Comparing SHARED Undo Mode and LOCAL Undo Mode
	Configuring Undo Retention
	Categories of Undo
	Guaranteeing Undo Retention
	Changing an Undo Tablespace to a Fixed Size
	Temporary Undo: Overview
	Temporary Undo Benefits
	Enabling Temporary Undo
	Monitoring Temporary Undo
	Summary

	Lesson 18: Creating and Managing User Accounts
	Objectives
	Database User Accounts
	Oracle-Supplied Administrator Accounts
	Creating Oracle Database Users in a Multitenant Environment
	Creating Common Users in the CDB and PDBs
	Creating Schema Only Accounts
	Authenticating Users
	Using Password Authentication
	Using Password File Authentication
	Using OS Authentication
	OS Authentication for Privileged Users
	Assigning Quotas
	Summary

	Lesson 19: Configuring Privilege and Role Authorization
	Objectives
	Privileges
	System Privileges
	System Privileges for Administrators
	Schema-Level Privileges
	New Developer Role and Simplified Schema Privileges
	Object Privileges
	Granting Privileges in a Multitenant Environment
	Granting Privileges: Example
	Using Roles to Manage Privileges
	Assigning Privileges to Roles and Assigning Roles to Users
	Oracle-Supplied Roles
	Granting Roles in a Multitenant Environment
	Granting Roles: Example
	Making Roles More Secure
	Revoking Roles and Privileges
	Granting and Revoking System Privileges
	Granting and Revoking Object Privileges
	Summary

	Lesson 20: Configuring User Resource Limits
	Objectives
	Profiles and Users
	Creating Profiles in a Multitenant Architecture
	Creating Profiles: Example
	Profile Parameters: Resources
	Profile Parameters: Locking and Passwords
	Oracle-Supplied Password Verification Functions
	Assigning Profiles in a Multitenant Architecture
	Summary

	Lesson 21: Implementing Oracle Database Auditing
	Objectives
	Database Security
	Monitoring for Compliance
	Types of Activities to be Audited
	Mandatorily Audited Activities
	Understanding Auditing Implementation
	Administering the Roles Required for Auditing
	Database Auditing: Overview
	Configuring Auditing
	Creating a Unified Audit Policy
	Creating an Audit Policy: Systemwide Audit Options
	Creating an Audit Policy: Object-Specific Actions
	Creating an Audit Policy: Specifying Conditions
	Enabling and Disabling Audit Policies
	Auditing Actions in the CDB and PDBs
	Modifying a Unified Audit Policy
	Auditing Top-Level Statements Only
	Viewing Audit Policy Information
	Value-Based Auditing
	Fine-Grained Auditing
	FGA Policy
	Audited DML Statements: Considerations
	FGA Guidelines
	Archiving and Purging the Audit Trail
	Purging Audit Trail Records
	Summary

	Lesson 22: Introduction to Loading and Transporting Data
	Objectives
	Moving Data: General Architecture
	Oracle Data Pump: Overview
	Oracle Data Pump: Benefits
	SQL Loader: Overview
	Summary

	Lesson 23: Loading Data
	Objectives
	SQL Loader: Review
	Creating the SQL*Loader Control File
	SQL*Loader Loading Methods
	Protecting Against Data Loss
	SQL*Loader Express Mode
	Using SQL*Loader to Load a Table in a PDB
	Summary

	Lesson 24: Transporting Data
	Objectives
	Data Pump Export and Import Clients
	Data Pump Interfaces and Modes
	Data Pump Import Transformations
	Using Oracle Data Pump with PDBs
	Exporting from a Non-CDB and Importing into a PDB
	Exporting and Importing Between PDBs
	Full Transportable Export/Import
	Full Transportable Export/Import: Example
	Transporting a Database Over the Network: Example
	Using RMAN to Transport Data Across Platforms
	RMAN CONVERT Command
	Transporting Data with Minimum Down Time
	Transporting a Tablespace by Using Image Copies
	Determining the Endian Format of a Platform
	Transporting Data with Backup Sets
	Transporting a Tablespace
	Transporting Inconsistent Tablespaces
	Summary

	Lesson 25: Using External Tables to Load and Transport Data
	Objectives
	External Tables
	External Tables: Benefits
	ORACLE_LOADER Access Driver
	ORACLE_DATAPUMP Access Driver
	External Tables
	Viewing Information About External Tables
	Summary
	Practice Overview

	Lesson 26: Automated Maintenance Tasks: Overview
	Objectives
	Proactive Database Maintenance Infrastructure
	Automated Maintenance Tasks: Components
	Predefined Automated Maintenance Tasks
	Maintenance Windows
	Predefined Maintenance Windows
	Automated Maintenance Tasks
	Summary

	Lesson 27: Automated Maintenance Tasks: Managing Tasks and Windows
	Objectives
	Configuring Automated Maintenance Tasks
	Enabling and Disabling Maintenance Tasks
	Creating and Managing Maintenance Windows
	Resource Allocations for Automated Maintenance Tasks
	Changing Resource Allocations for Maintenance Tasks
	Summary
	Practice Overview

	Lesson 28: Database Monitoring and Tuning Performance Overview
	Objectives
	Performance Management Activities
	Performance Planning Considerations
	Database Maintenance
	Automatic Workload Repository (AWR)
	Automatic Database Diagnostic Monitor (ADDM)
	Configuring Automatic ADDM Analysis at the PDB Level
	Advisory Framework
	Performance Tuning Methodology
	Summary

	Lesson 29: Monitoring Database Performance
	Objectives
	Server-Generated Alerts
	Setting Metric Thresholds
	Reacting to Alerts
	Alert Types and Clearing Alerts
	Database Server Statistics and Metrics
	Performance Monitoring
	Viewing Statistics Information
	Monitoring Wait Events
	Monitoring Sessions
	Monitoring Services
	Summary

	Lesson 30: Analyzing SQL and Optimizing Access Paths
	Objectives
	SQL Tuning Process
	Oracle Optimizer
	Optimizer Statistics
	Optimizer Statistics Collection
	Setting Optimizer Statistics Preferences
	Optimizer Statistics Advisor
	Optimizer Statistics Advisor Report
	Executing Optimizer Statistics Advisor Tasks
	SQL Plan Directives
	Adaptive Execution Plans
	SQL Tuning Advisor: Overview
	SQL Access Advisor: Overview
	SQL Performance Analyzer: Overview
	Managing Automated Tuning Tasks
	Summary

