
 Comprehensive Rust for Embedded System (60 Hours)
 This curriculum provides a well-structured learning path for mastering Rust development, integrating specific topics

with debugging, target-specific optimization, and code optimization techniques.

 Learning Objectives:

• Gain a strong foundation in core Rust concepts

• Apply asynchronous programming with Tokio and Futures

• Work with Rust Foreign Function Interface (FFI) for C interoperability

• Develop socket programming applications in Rust

• Profile and optimize Rust code for performance

• Understand Rust's memory model and manage lifetimes effectively

• Build applications for embedded systems with Rust (no_std environment)

• Implement robust error handling mechanisms in Rust applications

• Leverage the Rust libc crate for platform-specific functionality

 Table of Contents

Hours
0-8:

• Rust Fundamentals

• Data Types

• Introduction to functions

• Return values

• Function arguments

• The borrowing concept

• Using Panic!

• Error handling with match

• Structuring Data

• Structs

• Related Data

• Instantiating Structs

• Tuple Structs

• Pattern Matching

• Enums

• Defining Types

• Expressions

• Match control flow operator

• Rust Collections

• Lists

• Values

• Vectors

• Keys & Hash Maps

• Generics

• Types

• Traits

• Lifetimes

Hours
9-14:

Asynchronous Programming with Tokio and Futures

• Hands-on: Building a simple web server using Tokio

• Introduction to asynchronous programming in Rust

• Understanding Tokio, an asynchronous runtime for Rust

• Working with futures and async/await syntax

• Implementing asynchronous tasks and handling concurrency

• Error handling in asynchronous code

• Debugging asynchronous code with --debug flag

Hours 15-20: Rust Foreign Function Interface (FFI) with C

• Hands-on: Integrating Rust with a C library to perform image processing

• Introduction to FFI and its importance

• Interfacing Rust code with C libraries

• Using extern blocks and unsafe code

• Passing data between Rust and C functions

• Handling different types and memory management

• Debugging FFI code with --debug flag

• Optimizing FFI code with --Z mir-opt-level, --Z fuel=<crate>=<value>, and --codegen-units

• Target-specific optimization with RUSTFLAGS=”-C target-cpu=native”

Hours 21-25: Socket Programming in Rust

• Hands-on: Building a chat application using Rust sockets

• Overview of networking in Rust

• Creating TCP and UDP sockets

• Implementing server-client communication

• Handling connections and streams

• Error handling and asynchronous networking

• Debugging socket code with --debug flag

Hours 26-41: Rust Benchmarking and Optimization for Target Hardware

• Hands-on:

• Rust code optimization

• -C target-cpu=native (assuming it's an Intel processor).

• Understanding Rust's performance characteristics

• Hands on Benchmark | perf | FlameGraph | valgrind

• Profiling Rust code and identifying bottlenecks

• Techniques for benchmarking and performance testing

• Optimizing Rust code for specific hardware targets

• Using compiler flags and optimization techniques

Hours 42-47: Rust Memory Model and Lifetimes

• Hands-on: Implementing a data structure with strict lifetime requirements

• Understanding Rust's ownership model

• Exploring references and borrowing in Rust

• Lifetimes and how they enforce memory safety

• Avoiding common pitfalls related to memory management

• Advanced memory management techniques

• Debugging memory-related issues with --debug flag

• Optimizing memory usage with --Z mir-opt-level, --Z fuel=<crate>=<value>, and --codegen-

units

• Target-specific optimization with RUSTFLAGS=”-C target-cpu=native”

Hours 48-54: Rust for Embedded Systems (no_std, Interrupts)

• Hands-on: Writing firmware for a microcontroller using Rust

• Introduction to embedded systems development with Rust

• Using the no_std environment and custom allocators

• Interfacing with hardware peripherals and sensors

• Handling interrupts and real-time constraints

• Building and deploying Rust code on embedded platforms

• Debugging embedded code with --debug flag

• Optimizing embedded code with --Z mir-opt-level, --Z fuel=<crate>=<value>, and --codegen-

units

• Target-specific optimization with RUSTFLAGS=”-C target-cpu=native”

Hours 55-60: Error Handling and Panic in Rust

• Hands-on: Writing a robust file parsing library with comprehensive error handling

• Understanding error handling mechanisms in Rust

• Using Result and Option for error propagation

• Handling panics and unwinding behavior

• Customizing panic behavior with panic macros

• Best practices for error

