

Java Developer Training

Basics of Java Programming(Brief Refresher)

 Overview of the Java Ecosystem

 Basic Syntax and Data Types

 Control Structures: If-Else, Loops, Switch

 FuncƟons and Methods in Java

 Classes, Objects, and Constructors

 Inheritance and Polymorphism

 EncapsulaƟon and AbstracƟon

 Interfaces and Abstract Classes

Comparison Between C++ and Java

 Key Differences Between C++ and Java

 Memory Management: Manual vs. AutomaƟc

 Object-Oriented Programming: SimilariƟes and Differences

 Comparing Data Structures in C++ and Java

Memory Management and Garbage CollecƟon

 Basics of Java Memory Management

 Java's Memory Model: Heap and Stack

 Components of the JVM Memory

 Garbage CollecƟon in Java

 IntroducƟon to Garbage CollecƟon

 Types of Garbage Collectors: Serial, Parallel, CMS, G1

 Garbage CollecƟon Algorithms

 How Garbage CollecƟon Works

 GeneraƟonal Garbage CollecƟon

 Tuning Garbage CollecƟon

 Understanding Garbage CollecƟon Metrics

 JVM Flags for GC Tuning

 Analyzing Garbage CollecƟon Logs

Threads and Concurrency in Java

 Basics of Java Threads

 What is a Thread?

 CreaƟng Threads: Thread Class vs. Runnable Interface

 Thread Lifecycle and Management

 Thread States: New, Runnable, Blocked, WaiƟng, Timed WaiƟng,
Terminated

 StarƟng and Joining Threads

 Understanding MulƟthreading

 CreaƟng and Managing Threads

 SynchronizaƟon and Locks

 Concurrency Best PracƟces

Java CollecƟons Framework

 Overview and Importance of CollecƟons

 Core Interfaces: List, Set, Map, Queue

 ImplementaƟons: ArrayList, LinkedList

 When to Use Each ImplementaƟon

 List IteraƟon Techniques

 ImplementaƟons: HashSet, LinkedHashSet, TreeSet

 CharacterisƟcs of Different Set ImplementaƟons

 Choosing the Right Set for Your Use Case

 ImplementaƟons: HashMap, LinkedHashMap, TreeMap

 Keys and Values in Maps

 IteraƟon Over Maps

 ImplementaƟons: LinkedList, PriorityQueue, ArrayDeque

 Differences Between FIFO and Priority-Based Queues

 Use Cases for Different Queue Types

 Common CollecƟon OperaƟons

 SorƟng and Searching within CollecƟons

 Filtering and Transforming with Streams

 Using Comparator and Comparable Interfaces

Generics in CollecƟons

 Understanding Generics in Java

 Benefits of Using Generics with CollecƟons

 Common Generic PaƩerns and RestricƟons

Tools for Java Development

 Integrated Development Environments (IDEs): IntelliJ, Eclipse, NetBeans,
VSCode

 Build Tools: Maven and Gradle

 Version Control Systems: Git

 Other Useful Tools (e.g., StaƟc Analysis Tools, Profiling Tools)

JVM Internals

 Java Virtual Machine (JVM) Basics

 Class Loading and Bytecode

 Just-In-Time (JIT) CompilaƟon

 JVM Flags and Tuning

Code Review and Best PracƟces

 Importance of Code Reviews

 ConducƟng EffecƟve Code Reviews

 Common Code Review Mistakes to Avoid

 Tools for Code Review and CollaboraƟon

IntroducƟon to JUnit

 Overview of Unit TesƟng

 Seƫng Up JUnit in a Java Project

WriƟng Unit Tests with JUnit

 CreaƟng Test Classes and Test Methods

 Using AnnotaƟons: @Test, @BeforeEach, @AŌerEach

 AsserƟons in JUnit: assertEquals, assertTrue, etc.

TesƟng Techniques with JUnit

 Parameterized Tests

 ExcepƟon TesƟng with @Test(expected = ExcepƟon.class)

 Nested Tests with @Nested

Advanced JUnit Concepts

 Lifecycle Management with @BeforeAll and @AŌerAll

 Using Test Suites to Group Tests

 CondiƟonal Test ExecuƟon with @EnabledIf and Similar AnnotaƟons

IntroducƟon to Mockito

 What is Mockito?

 Importance of Mocking in Unit TesƟng

 Seƫng Up Mockito in a Java Project

Mocking with Mockito

 CreaƟng Mocks with Mockito.mock()

 Mocking Method Calls with Mockito.when()

 Using Mockito.verify() to Verify InteracƟons

Mockito Advanced Techniques

 Argument Matchers with Mockito.any(), Mockito.eq(), etc.

 Mocking StaƟc Methods with Mockito.mockStaƟc()

 Spying on Real Objects with Mockito.spy()

Performance Tuning and Profiling in Java

 IdenƟfying Performance BoƩlenecks

 Profiling Tools and Techniques

 Basic Performance Tuning Strategies

 JVM Flags for Performance OpƟmizaƟon

IntroducƟon to Spring Boot

 What is Spring Boot?

 History and EvoluƟon of Spring Framework

 Benefits of Using Spring Boot

Seƫng Up a Spring Boot Project

 CreaƟng a Spring Boot Project

 Maven and Gradle for Spring Boot Projects

 Project Structure and ConfiguraƟon

Core Spring Boot Components

 Main ApplicaƟon Class and @SpringBootApplicaƟon

 Auto-ConfiguraƟon and Spring Boot Starters

 ApplicaƟon ProperƟes and ConfiguraƟon

Dependency InjecƟon and Beans

 Basics of Dependency InjecƟon

 Defining Beans with @Bean and Component Scanning

 Scope of Beans: Singleton, Prototype, etc.

Spring Boot with RESTful APIs

 CreaƟng REST Controllers with @RestController

 Handling HTTP Requests: @GetMapping, @PostMapping, etc.

 Data SerializaƟon and DeserializaƟon with Jackson

Data Persistence in Spring Boot

 IntroducƟon to Spring Data JPA

 Configuring Data Sources and EnƟty RelaƟonships

 Working with Repositories and Custom Queries

Security in Spring Boot

 IntroducƟon to Spring Security

 Configuring Basic Security Seƫngs

 AuthenƟcaƟon and AuthorizaƟon with Spring Security

Advanced Spring Boot Topics

 Asynchronous Processing with @Async

 Building Event-Driven ApplicaƟons with Spring Boot

 Using Spring Boot with Microservices Architectures

