

Java Developer Training

Basics of Java Programming(Brief Refresher)

 Overview of the Java Ecosystem

 Basic Syntax and Data Types

 Control Structures: If-Else, Loops, Switch

 FuncƟons and Methods in Java

 Classes, Objects, and Constructors

 Inheritance and Polymorphism

 EncapsulaƟon and AbstracƟon

 Interfaces and Abstract Classes

Comparison Between C++ and Java

 Key Differences Between C++ and Java

 Memory Management: Manual vs. AutomaƟc

 Object-Oriented Programming: SimilariƟes and Differences

 Comparing Data Structures in C++ and Java

Memory Management and Garbage CollecƟon

 Basics of Java Memory Management

 Java's Memory Model: Heap and Stack

 Components of the JVM Memory

 Garbage CollecƟon in Java

 IntroducƟon to Garbage CollecƟon

 Types of Garbage Collectors: Serial, Parallel, CMS, G1

 Garbage CollecƟon Algorithms

 How Garbage CollecƟon Works

 GeneraƟonal Garbage CollecƟon

 Tuning Garbage CollecƟon

 Understanding Garbage CollecƟon Metrics

 JVM Flags for GC Tuning

 Analyzing Garbage CollecƟon Logs

Threads and Concurrency in Java

 Basics of Java Threads

 What is a Thread?

 CreaƟng Threads: Thread Class vs. Runnable Interface

 Thread Lifecycle and Management

 Thread States: New, Runnable, Blocked, WaiƟng, Timed WaiƟng,
Terminated

 StarƟng and Joining Threads

 Understanding MulƟthreading

 CreaƟng and Managing Threads

 SynchronizaƟon and Locks

 Concurrency Best PracƟces

Java CollecƟons Framework

 Overview and Importance of CollecƟons

 Core Interfaces: List, Set, Map, Queue

 ImplementaƟons: ArrayList, LinkedList

 When to Use Each ImplementaƟon

 List IteraƟon Techniques

 ImplementaƟons: HashSet, LinkedHashSet, TreeSet

 CharacterisƟcs of Different Set ImplementaƟons

 Choosing the Right Set for Your Use Case

 ImplementaƟons: HashMap, LinkedHashMap, TreeMap

 Keys and Values in Maps

 IteraƟon Over Maps

 ImplementaƟons: LinkedList, PriorityQueue, ArrayDeque

 Differences Between FIFO and Priority-Based Queues

 Use Cases for Different Queue Types

 Common CollecƟon OperaƟons

 SorƟng and Searching within CollecƟons

 Filtering and Transforming with Streams

 Using Comparator and Comparable Interfaces

Generics in CollecƟons

 Understanding Generics in Java

 Benefits of Using Generics with CollecƟons

 Common Generic PaƩerns and RestricƟons

Tools for Java Development

 Integrated Development Environments (IDEs): IntelliJ, Eclipse, NetBeans,
VSCode

 Build Tools: Maven and Gradle

 Version Control Systems: Git

 Other Useful Tools (e.g., StaƟc Analysis Tools, Profiling Tools)

JVM Internals

 Java Virtual Machine (JVM) Basics

 Class Loading and Bytecode

 Just-In-Time (JIT) CompilaƟon

 JVM Flags and Tuning

Code Review and Best PracƟces

 Importance of Code Reviews

 ConducƟng EffecƟve Code Reviews

 Common Code Review Mistakes to Avoid

 Tools for Code Review and CollaboraƟon

IntroducƟon to JUnit

 Overview of Unit TesƟng

 Seƫng Up JUnit in a Java Project

WriƟng Unit Tests with JUnit

 CreaƟng Test Classes and Test Methods

 Using AnnotaƟons: @Test, @BeforeEach, @AŌerEach

 AsserƟons in JUnit: assertEquals, assertTrue, etc.

TesƟng Techniques with JUnit

 Parameterized Tests

 ExcepƟon TesƟng with @Test(expected = ExcepƟon.class)

 Nested Tests with @Nested

Advanced JUnit Concepts

 Lifecycle Management with @BeforeAll and @AŌerAll

 Using Test Suites to Group Tests

 CondiƟonal Test ExecuƟon with @EnabledIf and Similar AnnotaƟons

IntroducƟon to Mockito

 What is Mockito?

 Importance of Mocking in Unit TesƟng

 Seƫng Up Mockito in a Java Project

Mocking with Mockito

 CreaƟng Mocks with Mockito.mock()

 Mocking Method Calls with Mockito.when()

 Using Mockito.verify() to Verify InteracƟons

Mockito Advanced Techniques

 Argument Matchers with Mockito.any(), Mockito.eq(), etc.

 Mocking StaƟc Methods with Mockito.mockStaƟc()

 Spying on Real Objects with Mockito.spy()

Performance Tuning and Profiling in Java

 IdenƟfying Performance BoƩlenecks

 Profiling Tools and Techniques

 Basic Performance Tuning Strategies

 JVM Flags for Performance OpƟmizaƟon

IntroducƟon to Spring Boot

 What is Spring Boot?

 History and EvoluƟon of Spring Framework

 Benefits of Using Spring Boot

Seƫng Up a Spring Boot Project

 CreaƟng a Spring Boot Project

 Maven and Gradle for Spring Boot Projects

 Project Structure and ConfiguraƟon

Core Spring Boot Components

 Main ApplicaƟon Class and @SpringBootApplicaƟon

 Auto-ConfiguraƟon and Spring Boot Starters

 ApplicaƟon ProperƟes and ConfiguraƟon

Dependency InjecƟon and Beans

 Basics of Dependency InjecƟon

 Defining Beans with @Bean and Component Scanning

 Scope of Beans: Singleton, Prototype, etc.

Spring Boot with RESTful APIs

 CreaƟng REST Controllers with @RestController

 Handling HTTP Requests: @GetMapping, @PostMapping, etc.

 Data SerializaƟon and DeserializaƟon with Jackson

Data Persistence in Spring Boot

 IntroducƟon to Spring Data JPA

 Configuring Data Sources and EnƟty RelaƟonships

 Working with Repositories and Custom Queries

Security in Spring Boot

 IntroducƟon to Spring Security

 Configuring Basic Security Seƫngs

 AuthenƟcaƟon and AuthorizaƟon with Spring Security

Advanced Spring Boot Topics

 Asynchronous Processing with @Async

 Building Event-Driven ApplicaƟons with Spring Boot

 Using Spring Boot with Microservices Architectures

