
Embunit Testing

1. Overview of C/C++ - Embuint

 Data Types, Variables and Operators

 Control Flow and Loops

 Understanding Program Structure

 Creating and Using Enumerations

 Understanding Program Structure

 Creating and Using Enumerations

 Functions in C

 Function Declaration and Definition

 Parameters and return values

2. Overview of EmbUnit

 Setting up EmbUnit in a C project

 Writing First Test Cases

 Basic assertions in EmbUnit

 Test Fixture and Test Suite

 Mocking and Stubbing

 Parameterized Testing

 Writing parameterized test cases

 Test case data management

 Test-Driven Development (TDD) with EmbUnit

 TDD principles and benefits

 Writing tests before code

 Refactoring and improving code

 Generating Reports with EmbUnit

 Analyzing test results and coverage reports

3. C Data Structures

 Arrays

 Linked Lists

 Stacks

 Queues

 Trees

 Graphs

4. Pointer

 Introducing pointers

 Direct and Indirect Addressing

 Dynamic Memory Allocation

 Declaring the pointer type, naming pointers and assigning addresses

 Declaring and using pointers to pointers

 Accessing pointer targets

5. Function Pointers

 How function pointers are different from regular pointers

 Passing pointers to functions

 Returning pointers from functions

 Using typedef to create aliases for function pointer types

 Allocating and deallocating memory for function pointers

6. Inter-process Communication

 Communicating between processes using pipes

 Communicating between processes using FIFO

 Passing a message from one process to another using the message queue

 Functions used in IPC using shared memory and message queues

 Communicating between processes using shared memory

7. Socket Programming

 Communicating between the client and server using socket programming

 Client-server model

 Sending data to the client

 Reading data that's been sent from the server

8. Multithreading

 Performing a task with a single thread

 Performing multiple tasks with multiple threads

9. Data Structure Algoritms

10. Coding for Perfromance

 Using the register keyword in C code for better efficiency

 Taking input faster in C

 Applying loop unrolling for faster results

 Buffer overflow

 Learning how to avoid a buffer overflow

