Embunit Testing

Overview of C/C++ - Embuint

e Data Types, Variables and Operators
e Control Flow and Loops

e Understanding Program Structure

e Creating and Using Enumerations

e Understanding Program Structure

e Creating and Using Enumerations

e FunctionsinC

e Function Declaration and Definition
e Parameters and return values

Overview of EmbUnit

e Setting up EmbUnit in a C project

o Writing First Test Cases

e Basic assertions in EmbUnit

e Test Fixture and Test Suite

e Mocking and Stubbing

e Parameterized Testing

e Writing parameterized test cases

e Test case data management

e Test-Driven Development (TDD) with EmbUnit
e TDD principles and benefits

e Writing tests before code

e Refactoring and improving code

e Generating Reports with EmbUnit

e Analyzing test results and coverage reports

C Data Structures

e Arrays

e Linked Lists
e Stacks

e Queues

o Trees

e Graphs
Pointer

e Introducing pointers

e Direct and Indirect Addressing

e Dynamic Memory Allocation

e Declaring the pointer type, naming pointers and assigning addresses



e Declaring and using pointers to pointers
e Accessing pointer targets

Function Pointers

e How function pointers are different from regular pointers
e Passing pointers to functions

e Returning pointers from functions

e Using typedef to create aliases for function pointer types
e Allocating and deallocating memory for function pointers

Inter-process Communication

e Communicating between processes using pipes

e Communicating between processes using FIFO

e Passing a message from one process to another using the message queue
e Functions used in IPC using shared memory and message queues

e Communicating between processes using shared memory

Socket Programming

e Communicating between the client and server using socket programming
e C(Client-server model

Sending data to the client

Reading data that's been sent from the server

Multithreading
e Performing a task with a single thread
o Performing multiple tasks with multiple threads

Data Structure Algoritms

. Coding for Perfromance

e Using the register keyword in C code for better efficiency
e Taking input faster in C

e Applying loop unrolling for faster results

e Buffer overflow

e Learning how to avoid a buffer overflow



