
Embedded Systems Using C  
32 Hours 

Course Description 
This course provides a comprehensive introduction to programming embedded systems using 
the C programming language. Participants will gain practical insights into developing embedded 
software for the 8051-microcontroller family, exploring topics such as I/O pins, timers, interrupts, 
serial interfaces, and power consumption. Through hands-on examples and projects, participants 
will learn to configure the Keil software, simulate programs, and build the associated hardware. 

Audience 
This course is designed for professionals, students, and enthusiasts interested in acquiring practical skills in 
embedded systems programming using C. It is suitable for individuals with a basic understanding of 
programming concepts and a keen interest in developing software for microcontrollers. 

Pre-requisite Knowledge/Skills 
 Basic programming knowledge 
 Understanding of fundamental electronic concepts 

Course Objectives 
Upon completion of this course, participants will be able to: 

 Understand the fundamentals of embedded systems and the selection of processors. 
 Effectively program the 8051-microcontroller family, considering external interfaces, memory issues, and 

power consumption. 
 Develop, configure, and simulate embedded software using the Keil software. 
 Implement techniques for reading and managing input from switches, including addressing switch bounce. 
 Structure code using object-oriented programming principles in C. 
 Meet real-time constraints through hardware delays, timeouts, and reliable switch interfaces. 
 Create a simple embedded operating system (sEOS) and apply it to real-world scenarios. 
 Implement multi-state systems and function sequences for varied applications. 
 Utilize the serial interface (RS-232) for communication, demonstrating applications such as data acquisition 

and remote-control systems. 
 Apply the acquired skills in a practical case study: developing an intruder alarm system. 

 

 

 

 



Course Outline 

Module 1: Introduction to Embedded Systems 

 Introduction 
 What is an embedded system? 
 Which processor should you use? 
 Which programming language should you use? 
 Which operating system should you use? 
 How do you develop embedded software? 
 Conclusions 

Module 2: 8051 Microcontroller Family 

 Introduction 
 What’s in a name? 
 The external interface of the Standard 8051 
 Reset requirements 
 Clock frequency and performance 
 Memory issues 
 I/O pins 
 Timers 
 Interrupts 
 Serial interface 
 Power consumption 
 Conclusions 

Module 3: Hello, Embedded World 

 Introduction 
 Installing the Keil software and loading the project 
 Configuring the simulator 
 Building the target 
 Running the simulation 
 Dissecting the program 
 Aside: Building the hardware 
 Conclusions 

Module 4: Reading Switches 



 Introduction 
 Basic techniques for reading from port pins 
 Example: Reading and writing bytes 
 Example: Reading and writing bits (simple version) 
 Example: Reading and writing bits (generic version) 
 The need for pull-up resistors 
 Dealing with switch bounce 
 Example: Reading switch inputs (basic code) 
 Example: Counting goats 
 Conclusions 

Module 5: Adding Structure to Your Code 

 Introduction 
 Object-oriented programming with C 
 The Project Header (MAIN.H) 
 The Port Header (PORT.H) 
 Example: Restructuring the ‘Hello Embedded World’ example 
 Example: Restructuring the goat-counting example 
 Further examples 
 Conclusions 

Module 6: Meeting Real-time Constraints 

 Introduction 
 Creating ‘hardware delays’ using Timer 0 and Timer 1 
 Example: Generating a precise 50 ms delay 
 Example: Creating a portable hardware delay 
 Why not use Timer 2? 
 The need for ‘timeout’ mechanisms 
 Creating loop timeouts 
 Example: Testing loop timeouts 
 Example: A more reliable switch interface 
 Creating hardware timeouts 
 Example: Testing a hardware timeout 
 Conclusions 

Module 7: Creating an Embedded Operating System 

 Introduction 



 The basis of a simple embedded OS 
 Introducing sEOS 
 Using Timer 0 or Timer 1 
 Is this approach portable? 
 Alternative system architectures 
 Important design considerations when using sEOS 
 Example: Milk pasteurization 
 Conclusions 

Module 8: Multi-state Systems and Function Sequences 

 Introduction 
 Implementing a Multi-State (Timed) system 
 Example: Traffic light sequencing 
 Example: Animatronic dinosaur 
 Implementing a Multi-State (Input/Timed) system 
 Example: Controller for a washing machine 
 Conclusions 

Module 9: Using the Serial Interface 

 Introduction 
 What is RS-232? 
 Does RS-232 still matter? 
 The basic RS-232 protocol 
 Asynchronous data transmission and baud rates 
 Flow control 
 The software architecture 
 Using the on-chip UART for RS-232 communications 
 Memory requirements 
 Example: Displaying elapsed time on a PC 
 The Serial-Menu architecture 
 Example: Data acquisition 
 Example: Remote-control robot 
 Conclusions 

Module 10: Case Study: Intruder Alarm System 

 Introduction 
 The software architecture 



 Key software components used in this example 
 Running the program 
 The software 
 Conclusions 

 
 


