Applied Machine Learning & Data Science Techniques

Duration: 03 days **Courseware:** Unofficial

Table of Contents

Module 1: Data Exploration & Clustering

- 1.1 Introduction to Data Exploration
 - Overview of data exploration techniques
 - Importance of data preprocessing and cleaning
- 1.2 Exploratory Data Analysis (EDA)
 - Visualizations and feature engineering
 - Understanding distributions, correlations, and patterns
- 1.3 Clustering Techniques
 - K-means clustering
 - Hierarchical clustering
 - Density-based clustering (DBSCAN)
 - Applications of clustering in business

Module 2: Recommendation Systems

- 2.1 Fundamentals of Recommendation Systems
 - Types of recommendation systems: collaborative, content-based, hybrid
 - Evaluation metrics: precision, recall, F1 score
- 2.2 Collaborative Filtering
 - User-based and item-based filtering
 - Matrix factorization techniques (e.g., SVD)
- 2.3 Content-Based Recommendations

• Feature extraction and similarity measures

2.4 Advanced Techniques

- Hybrid recommendation systems
- Deep learning-based recommenders

Module 3: Regression Analysis

3.1 Introduction to Regression

- Applications and use cases of regression
- Simple linear regression

3.2 Multiple Linear Regression

- Assumptions and diagnostics
- Feature selection and regularization (Lasso, Ridge)

3.3 Advanced Regression Techniques

- Polynomial regression, stepwise regression
- Non-linear regression techniques
- Handling multicollinearity and heteroscedasticity

Module 4: Decision Systems

- 4.1 Overview of Decision Systems
 - Decision trees and rule-based systems
 - Applications of decision systems

4.2 Decision Tree Models

- Classification and regression trees (CART)
- Pruning and tuning decision trees

4.3 Ensemble Methods

Random forests, boosting (AdaBoost, XGBoost)

Bagging and stacking techniques

Module 5: Forecasting Systems

- 5.1 Fundamentals of Forecasting
 - Understanding time series data and trends
 - Types of forecasting models and applications
- 5.2 Statistical Forecasting Models
 - ARIMA, SARIMA models
 - Seasonal decomposition
- 5.3 Machine Learning for Time Series Forecasting
 - Prophet, LSTM, and other deep learning models
 - Evaluating forecasting accuracy

Module 6: Neural Networks

- 6.1 Introduction to Neural Networks
 - Basic concepts and structure of neural networks
 - Activation functions, loss functions, and backpropagation
- 6.2 Deep Learning Models
 - Convolutional Neural Networks (CNNs) for image data
 - Recurrent Neural Networks (RNNs) for sequence data
- 6.3 Advanced Neural Network Architectures
 - Transfer learning and fine-tuning
 - Attention mechanisms and transformers