Day 1: SQL Database Operations

Topics:

Database concepts and normalization

Creating, altering, and dropping databases

Creating, renaming, and dropping tables

Data types and constraints (Foreign Key, Unique, Check)
Insert, update, and delete operations

Select statements, sorting, and grouping

Data retrieval from multiple tables

Lab Problems:

1.

Student Database: Create a SQL database for a student management system. Include tables
for students, courses, and enrollments.

SQL Data Queries: Write SQL queries to insert student records, update their course
enrollments, and delete student entries if they leave the program.

JOIN Queries: Use JOIN operations to display which students are enrolled in which courses,
along with sorting by student names.

Day 2: C# and Object-Oriented Programming (OOP)

Topics:

Introduction to C# and OOP concepts (class, object, inheritance, polymorphism)
Conditional and looping constructs

Exception handling

File operations

N-tier architecture and debugging techniques

Collections and LINQ

DB Connection Using ADO.NET

Using SglConnection, SqlCommand, SqglDataAdapter

DB Connection Using Entity Framework

Lab Problems:

1.

Library System: Implement a C# program that models a library with classes for Book,
Member, and Transaction. Allow members to borrow and return books.

File Handling: Create a C# program that reads data from a text file containing student names
and writes their attendance status into another file.

3. LINQQueries: Write a C# program to filter and display a list of books whose titles contain the
word "Programming" using LINQ.

Day 3: Working with ASP.NET

e Whatis MVC?

e Hello World with MVC

e View/Partial View in MVC

e Models, View and Controller
e Web API

e Routing in MVC

e View Bagvs View Data

Lab Project

1. Create a MV Project
2. Add /Edit/Delete/Listing Records including Search and Pagination and Sorting

Day 4: Async Programming in .NET Core & ASP.NET Core Basics
e Topics:
1. Async Programming in .NET Core:

» Overview of synchronous vs asynchronous programming.
» Task-based Asynchronous Pattern (TAP).
* Implementing async/await in .NET Core.
* Handling exceptions and cancellation tokens in async operations.
= Performance considerations with asynchronous programming.

2. ASP.NET Core Basics:

ASP.NET Core project structure.

» The request processing pipeline.

= Middleware, routing, and services.

= Dependency Injection (DI) in ASP.NET Core.

= Creating simple MVC controllers and views.

» Building basic APIs using controllers and action methods.
e Lab:

o Create an ASP.NET Core application that performs both synchronous and
asynchronous operations for HTTP calls and file 1/0.

o Build basic MVC controllers and a simple APl endpoint.

Day 5: Entity Framework (EF) Core & Security in .NET Core
e Topics:
1. Entity Framework Core:
* Introduction to EF Core and ORM (Object-Relational Mapping).
» Code-first and database-first approaches.
» Configuring DbContext and defining models.
= LINQ for querying data.
»= Relationships (one-to-one, one-to-many, many-to-many).
* Migrations and database updates.
2. Security in .NET Core:
= ASP.NET Core Identity for user authentication.
= JWT (JSON Web Token) for securing Web APIs.
= Role-based and policy-based authorization.
*= Protecting data with encryption and Data Protection API.
» Best practices for securing .NET Core applications (e.g., HTTPS, CORS, CSRF).
e lab:

o Build a simple CRUD application using EF Core to manage a "Customer" and "Order"
system.

o Implement JWT-based authentication to secure the API.

o Implement role-based authorization to restrict access to specific actions.

Day 6: Hosting .NET Core Apps with IIS & Docker
e Topics:

1. Hosting with IIS:
= Qverview of web hosting and IIS.
= Setting up IIS for hosting ASP.NET Core applications.
*= Configuring application pools, environment variables, and bindings.
= Deploying applications to IIS.

2. Docker for .NET Core:

= |ntroduction to Docker and its use in microservices architecture.

= Containerizing .NET Core applications.
»= Creating Dockerfiles and working with .dockerignore.
e Lab:

o Deploy an ASP.NET Core application on IIS, configure the hosting environment, and
troubleshoot issues.

o Dockerize the ASP.NET Core APl and run it inside a container

