

Machine Learning Specialty

Course Duration	5 Day (40 hours)
Target Audience	Machine Learning Enthusiasts, Data Analyst, Data Scientist
Course Outcomes	Understand the fundamentals of Data Science and Machine Learning.
	Analyze and preprocess data proficiently using Python.
	Apply Supervised Machine Learning techniques for regression and
	classification.
	Introduce Unsupervised Machine Learning and Deep Learning concepts.

Module	Content
Module 01: Introduction to Data Science & Machine Learning	Need for Data Science and Machine Learning
	Types of Analytics
	Lifecycle of a Data Science project
	Skills for a Data Scientist role
	Types of Machine Learning
	Introduction to Python
	Python Libraries – NumPy, Pandas, matplotlib, Seaborn scikit-
	learn, TensorFlow, Keras, Pytorch
	Exploratory Data Analysis (EDA)
	Data Cleaning Techniques, Handling Missing Data, Handling
	Categorical Data
	Introduction to EDA, 2D Scatter-plot, 3D Scatter-plot, Pair plots
Module 02:	Univariate, Bivariate, and Multivariate Analysis, Box-plot
Python for Data Analysis & Pre- Processing	Data Pre-Processing
	Need for Data Pre-Processing
	Handling Missing Values
	Label-Encoding for Categorical Data
	Hot-Encoding for Categorical Data Explained
	Data Transformation
	Need for Data Transformation
	Concept of Data Normalization
	Data Normalization Techniques - Standard Scalar & Minmax
	Train, Test & Validation of Data
	Simple Linear Regression
	Concept of Linear Regression

	Ordinary Least Square and Regression Errors
	Data Processing & Train and Test of Model
	Model Evaluation Parameters like R-squared, Score, RMSE and
	their Interpretations
	Prediction Plot & its Interpretation
	Hands-on Problem
Module 03:	Multiple Linear Regression
Supervised	Concept of Multiple Linear Regression
Machine Learning -	Degrees of Freedom
Regression	Adjusted R-Squared
Negression	Assumptions of Multiple Linear Regression - Linearity,
	Multicollinearity, Autocorrelation, Endogeneity, Normality of
	Residuals, Homoscedasticity, etc.
	Concept of time-lag data in Autocorrelation
	Concept of Dummy variable trap
	Hands-on Problem
	Logistic Regression
	Concept of Logistic Regression
	Concept of Stratification
	Concept of Confusion Matrix
	Hands-on Problem
	Support Vector Machine (SVM)
	Common Sensical Intuition of SVM
	Mathematical Intuition of SVM
	Different types of SVM Kernel Functions
	Hands-on Problem (Preferred: IRIS Classification Problem)
	Decision Tree Classifier
Module 04:	Intuition Behind Decision Trees
Supervised	Optimal Model Selection Criterion in Decision Tree
Machine Learning -	Hands-on Problem
Classification	Random Forest Classifier
	Ensemble Learning and Random Forests
	Bagging and Boosting
	Hands-on Problem
	Evaluation Metrics for Classification Models
	Need for Evaluation and Accuracy Paradox
	Different Measures for Classification Models - Accuracy,
	Precision, Recall, F1 Score, etc.
	Threshold and Adjusting Thresholds
	AUC ROC Curve
	Hands-on Problem
	Univariate Feature Selection
	Univariate reature Selection

	Feature Selection Importance
Module 05: Feature Selection and Dimensionality Reduction	Concept of Univariate Feature Selection
	F-Test for Regression and Classification
	Hands on F-test (p value analysis)
	Chi-Squared for Classification
	Feature Selection Techniques - SelectKBest, SelectPerecntile &
	Generic Univariate Select
	Hands-on Chi-squared (p value analysis)
	Recursive Feature Elimination (RFE)
	Concept of Recursive Feature Elimination (RFE)
	Feature Importance Score/Feature Ranking
	Hands-on RFE
	Principle Component Analysis (PCA)
	Need to reduce dimensions and Importance of PCA
	Mathematical Intuition of PCA & Steps to calculate PCA
	Hands-on PCA (Model Comparisons with PCA & without PCA
	recommended)
	Cross Validation
	Importance of Cross Validation
Module 06:	Parameter & Implementation of Cross Validation
Cross validation &	Hands-on Problem (Drawing inference from results)
Hyperparameter	Hyperparameter Tuning
, , ,	Concept of Hyperparameter Tuning
Tuning	Grid Search & Randomized Search
	Hands-on GridSearchCV (analyse results)
Module 07:	Introduction to NLP
	Basic Concepts of NLP: Tokenization, stop words, Stemming,
Unsupervized	Lemmatization, etc.
Machine Learning	Tfidf Vector and its mathematical intuition
_	That vector and its mathematical intuition
	Danaman dation and an annual
Natural Language	Recommendation system example
Processing	
	Introduction to Clustering
	Mathematical intuition behind cluster formation
	Elbow method & its mathematical intuition
	K-means Clustering Implementation (numerical)
Module 08:	K-means Clustering Implementation (natural language
Unsupervized	processing)
Machine Learning	Processing/
Clustering	
Module 09:	Need & Applications of Deep Learning
ı	

Deep Learning	
	Working of Artificial Neural Network
	Backend (TensorFlow) & Frontend (Keras)
	Concept of Tensor
	Keras Model Building Overview - Construct, Compile & Evaluate
	Activation Function
	Loss Functions
	Optimization Techniques
	Evaluation metrics for Deep Learning