
Fundamentals of Bicep Training

Unit 1

- What is infrastructure as code?

- Defining Infrastructure as code
- Why use Infrastructure as code?

- Increase confidence

• Integration with current processes
• Consistency
• Automated scanning
• Secret management
• Access control
• Avoid configuration drift

- Manage multiple environments

• Provision new environments
• Non-production environments
• Disaster recovery

- Better understand your cloud resources

• Audit trail
• Documentation
• Unified system
• Better understanding of cloud infrastructure

Imperative and declarative code

Unit 2

What is Azure Resource Manager?

Azure Resource Manager concepts

Terminology

• Resource
• Resource group
• Subscription
• Management group:
• Azure Resource Manager template

Benefits

Operations: Control plane and data plane

Why use ARM templates?

• Repeatable results
• Orchestration
• Preview
• Testing and Validation
• Modularity
• CI/CD integration
• Extensibility

JSON and Bicep templates

Unit 3

What is Bicep?

Benefits of Bicep

• Simpler syntax:
• Modules
• Automatic dependency management
• Type validation and IntelliSense

Unit 4

How Bicep works

Bicep deployment

Comparing JSON and Bicep

Unit 5

When to use Bicep

Is Bicep the right tool?

When is Bicep the right tool?

• Azure-native
• Azure integration
• Azure support
• No state management
• Easy transition from JSON

When is Bicep not the right tool?

• Existing tool set:
• Multicloud

• What is the main goal?
• After completing this module, you'll be able to determine whether infrastructure as code is

the right approach and tool for your organization.

