

PCPP1 – Certified Professional in Python Programming 1

Duration: 32 hours

Section 1: Advanced Object-Oriented Programming

PCPP-32-101 1.1 – Understand and explain the basic terms and programming concepts used in the

OOP paradigm

• essential terminology: class, instance, object, attribute, method, type, instance and class

variables, superclasses and subclasses

• reflexion: isinstance(), issubclass()

• the __init__() method

• creating classes, methods, and class and instance variables; calling methods; accessing class and

instance variables

PCPP-32-101 1.2 – Perform Python core syntax operations

• Python core syntax expressions – magic methods: comparison methods (e.g. __eq__(self,

other)), numeric methods (e.g. __abs__(self)), type conversion methods (e.g. __init__(self)),

object intro- and retrospection (e.g. __str__(self), __instancecheck__(self, object)), object

attribute access (e.g. __getattr__(self, attribute)), accessing containers (e.g. __getitem__(self,

key))

• operating with special methods

• extending class implementations to support additional core syntax operations

PCPP-32-101 1.3 Understand and use the concepts of inheritance, polymorphism, and composition

• class hierarchies

• single vs. multiple inheritance

• Method Resolution Order (MRO)

• duck typing

• inheritance vs. composition

• modelling real-life problems using the "is a" and "has a" relations

PCPP-32-101 1.4 Understand the concept of extended function argument syntax and demonstrate

proficiency in using decorators

• special identifiers: *args, **kwargs

• forwarding arguments to other functions

• function parameter handling

• closures

• function and class decorators

• decorating functions with classes

• creating decorators and operating with them: implementing decorator patterns, decorator

arguments, wrappers

• decorator stacking

• syntactic sugar

• special methods: __call__, __init__

PCPP-32-101 1.5 Design, build, and use Python static and class methods

• implementing class and static methods

• class vs. static methods

• the cls parameter

• the @classmethod and @staticmethod decorators

• class methods: accessing and modifying the state/methods of a class, creating objects

PCPP-32-101 1.6 Understand and use Python abstract classes and methods

• abstract classes and abstract methods: defining, creating, and implementing abstract classes

and abstract methods

• overriding abstract methods

• implementing a multiple inheritance from abstract classes

• delivering multiple child classes

PCPP-32-101 1.7 Understand and use the concept of attribute encapsulation

• definition, meaning, usage

• operating with the getter, setter, and deleter methods

PCPP-32-101 1.8 Understand and apply the concept of subclassing builtin classes

• inheriting properties from built-in classes

• using the concept of subclassing the built-ins to extend class features and modify class methods

and attributes

PCPP-32-101 1.9 Demonstrate proficiency in the advanced techniques for creating and serving

exceptions

• exceptions as objects, named attributes of exception objects, basic terms and concepts

• chained exceptions, the __context__ and __cause__ attributes, implicitly and explicitly chained

exceptions

• analyzing exception traceback objects, the __traceback__ attribute

• operating with different kinds of exceptions

PCPP-32-101 1.10 Demonstrate proficiency in performing shallow and deep copy

operations

• shallow and deep copies of objects

• object: label vs. identity vs. value

• the id() function and the is operand

• operating with the copy() and deepcopy() methods

PCPP-32-101 1.11 Understand and perform (de)serialization of Python objects

• object persistence, serialization and deserialization: meaning, purpose, usage

• serializing objects as a single byte stream: the pickle module, pickling various data types

• the dumps() and loads functions

• serializing objects by implementing a serialization dictionary: the shelve module, file modes,

creating chelve objects

PCPP-32-101 1.12 Understand and explain the concept of metaprogramming

• metaclasses: meaning, purpose, usage

• the type metaclass and the type() function

• special attributes: __name__, __class__, __bases__, __dict__ operating with metaclasses,

class variables, and class methods

Section 2: Coding Conventions, Best Practices, and Standardization

PCPP-32-101 2.1 – Understand and explain the concept of Python Enhancement Proposals and

Python philosophy

• the PEP concept and selected PEPs: PEP 1, PEP 8, PEP 20, PEP 257

• PEP 1: different types of PEPs, formats, purpose, guidelines

• PEP 20: Python philosophy, its guiding principles, and design; the import this instruction and

PEP 20 aphorisms

PCPP-32-101 2.2 – Employ the PEP 8 guidelines, coding conventions, and best practices

• PEP 8 compliant checkers

• recommendations for code layout: indentation, continuation lines, maximum line length, line

breaks, blank lines (vertical whitespaces) default encodings

• module imports

• recommendations for string quotes, whitespace, and trailing commas: single-quoted vs. double-

quoted strings, whitespace in expressions and statements, whitespace and trailing commas

• recommendations for using comments: block comments, inline comments

• documentation strings

• naming conventions: naming styles, recommendations

• programming recommendations

PCPP-32-101 2.3 – Employ the PEP 257 guidelines, conventions, and best practices

• docstrings: rationale, usage

• comments vs. docstrings

• PEP 484 and type hints

• creating, using, and accessing docstrings

• one-line vs. multi-line docstrings documentation standards, linters, fixers

Section 3: GUI Programming

PCPP-32-101 3.1 – Understand and explain the basic concepts and terminology related to GUI

programming

• GUI: meaning, rationale, basic terms and definitions

• visual programming: examples, basic features

• widgets/controls – basic terms: windows, title and title bars, buttons, icons, labels, etc.

• classical vs. event-driven programming

• events – basic terms

• widget toolkits/GUI toolkits

PCPP-32-101 3.2 – Use GUI toolkits, basic blocks, and conventions to design and build simple GUI

applications

• importing tkinter components

• creating an application's main window: the Tk(), mainloop(), and title methods

• adding widgets to the window: buttons, labels, frames, the place() method, widget

constructors, location, screen coordinates, size, etc.

• launching the event controller: event handlers, defining and using callbacks, the destroy()

method, dialog boxes

• shaping the main window and interacting with the user

• checking the validity of user input and handling errors

• working with Canvas and its methods

• using the Entry, Radiobutton, and Button widgets

• managing widgets with the grid and place managers

• binding events using the bind() method

PCPP-32-101 3.3 – Demonstrate proficiency in using widgets and handling events

• settling widgets in the window's interior, geometry managers

• coloring widgets, color modes: RGB, HEX

• event handling: writing event handlers and assigning them to widgets

• event-driven programming: implementing interfaces using events and callbacks

• widget properties and methods

• variables: observable variables and adding observers to variables

• using selected clickable and non-clickable widgets

• identifying and servicing GUI events

Section 4: Network Programming

PCPP-32-101 4.1 – Understand and explain the basic concepts of network programming

• REST

• network sockets

• Domains, addresses, ports, protocols, and services

• Network communication: connection-oriented vs. connectionless communication, clients and

servers

PCPP-32-101 4.2 – Demonstrate proficiency in working with sockets in Python

• the socket module: importing and creating sockets

• connecting sockets to HTTP servers, closing connections with servers

• sending requests to servers, the send() method

• receiving responses from servers, the recv() method

• exception handling mechanisms and exception types

PCPP-32-101 4.3 – Employ data transfer mechanisms for network communication

• JSON: syntax, structure, data types (numbers, strings, Boolean values, null), compound data

(arrays and objects), sample JSON documents and their anatomies

• the json module: serialization and deserialization, serializing Python data/deserializing JSON

(the dumps() and loads methods), serializng and deserializing Python objects

• XML: syntax, structure, sample xml documents and their anatomies, DTD, XML as a tree

• processing xml files

PCPP-32-101 4.4 – Design, develop, and improve a simple REST client

• the request module

• designing, building, and using testing environments

• HTTP methods: GET, POST, PUT, DELETE

• CRUD

• adding and updating data

• fetching and removing data from servers

• analyzing the server's response

• response status codes

Section 5: File Processing and Communicating with a Program’s Environment
PCPP-32-101 5.1 – Demonstrate proficiency in database programming in Python

• the sqlite module

• creating and closing database connection using the connect and close methods

• creating tables

• inserting, reading, updating, and deleting data

• transaction demarcation

• cursor methods: execute, executemany, fetchone, fetchall

• creating basic SQL statements (SELECT, INSERT INTO, UPDATE, DELETE, etc.)

PCPP-32-101 5.2 – Demonstrate proficiency in processing different file formats in Python

• parsing XML documents

• searching data in XML documents using the find and findall methods

• building XML documents using the Element class and the SubElement function

• reading and writing CSV data using functions and classes: reader, writer, DictReader, DictWriter

• logging events in applications

• working with different levels of logging

• using LogRecord attributes to create log formats

• creating custom handlers and formatters

• parsing and creating configuration files using the ConfigParser object

• interpolating values in .ini files

