

Security and the Linux Kernel (LFD441)

Introduction

- Objectives

- Who You Are

- The Linux Foundation

- Copyright and No Confidential Information

- Linux Foundation Training

- Certification Programs and Digital Badging

- Linux Distributions

- Platforms

- Preparing Your System

- Using and Downloading a Virtual Machine

- Things Change in Linux and Open Source Projects

- Documentation and Links

Preliminaries

- Procedures

- Kernel Versions

- Kernel Sources and Use of git

- Labs

Secure Boot VM Setup

- Labs

How to Work in OSS Projects

- Overview on How to Contribute Properly

- Know Where the Code is Coming From: DCO and CLA

- Stay Close to Mainline for Security and Quality

- Study and Understand the Project DNA

- Figure Out What Itch You Want to Scratch

- Identify Maintainers and Their Work Flows and Methods

- Get Early Input and Work in the Open

- Contribute Incremental Bits, Not Large Code Dumps

- Leave Your Ego at the Door: Don't Be Thin-Skinned

- Be Patient, Develop Long Term Relationships, Be Helpful

Reducing Attack Surfaces

- Why Security?

- Types of Security

- Vulnerabilities

- Layers of Protection

- Software Exploits

- Labs

Kernel Features

- Components of the Kernel

- User-Space vs. Kernel-Space

- What are System Calls?

- Available System Calls

- Scheduling Algorithms and Task Structures

- Process Context

- Labs

Kernel Deprecated Interfaces

- Why Deprecated

- __deprecated

- BUG() and BUG_ON()

- Computed Sizes for kmalloc()

- simple_strtol() Family of Routines

- strcpy(), strncpy(), strlcpy()

- printk() %p Format Specifier

- Variable Length Arrays

- Switch Case Fall-Through

- Zero-Length and One-Element Arrays in Structs

Address Space Layout Randomization (ASLR)

- Why ASLR?

- How to Use ASLR

- Disabling ASLR for Specific Programs

- Kernel Configuration

- Kernel Address Space Layout Randomization (KASLR)

- How KASLR Works

- Enabling KASLR

- Labs

Kernel Structure Layout Randomization

- Benefits

- How Structure Randomization Works

- Structure Initialization

- Opt-in vs Opt-out

- Partial Randomization

- Enabling Structure Randomization

- Building Out-of-tree Modules with Structure Randomization

Introduction to Linux Kernel Security

- Linux Kernel Security Basics

- Discretionary Access Control (DAC)

- POSIX ACLs

- POSIX Capabilities

- Namespaces

- Linux Security Modules (LSM)

- Netfilter

- Cryptographic Methods

- The Kernel Self Protection Project

CGroups

- Introduction to CGroups

- Overview

- Components of CGroup

- cgroup initialization

- cgroup Activation

- cgroups Parameters

- Testing cgroups

- systemd and cgroups

- Labs

Secure Boot

- Why Secure Boot?

- Secure Boot x86

- Embedded Systems Secure Boot

- Labs

Module Signing

- What is Module Signing?

- Basics of Signatures

- Module Signing Keys

- Enabling Module Signature Verification

- How It Works

- Signing Modules

- Labs

Integrity Measurement Architecture (IMA)

- Why IMA?

- Conceptual Operations

- Modes of Operation

- Collect Mode textit {(Collect and Store)

- Logging Mode textit {(Appraise and Audit)

- Enforcing Mode textit {(Appraise and Protect)

- Extended Verification Module (EVM)

- Labs

DM-Verity

- What is dm-verity?

- How dm-verity Works

- Enabling dm-verity

- Setting up dm-verity

- Using dm-verity

- Signing with dm-verity

- Booting with dm-verity

- Labs

Linux Security Modules (LSM)

- What are Linux Security Modules?

- LSM Basics

- LSM Choices

- How LSM Works

- An LSM Example: Yama

- Labs

SELinux

- SELinux

- SELinux Overview

- SELinux Modes

- SELinux Policies

- Context Utilities

- SELinux and Standard Command Line Tools

- SELinux Context Inheritance and Preservation**

- restorecon**

- semanage fcontext**

- Using SELinux Booleans**

- getsebool and setsebool**

- Troubleshooting Tools

- Labs

AppArmor

- What is AppArmor?

- Checking Status

- Modes and Profiles

- Profiles

- Utilities

LoadPin (LSM)

- Why LoadPin?

- Enabling LoadPin

- Using LoadPin

- How LoadPin Works

Lockdown

- Why Lockdown?

- Lockdown Modes

- What Things are Locked Down?

- How It Works

- A Few Notes

- Labs

Safesetid

- Why Safesetid?

- Configuring Safesetid

- How Safesetid Works

- Labs

Netfilter

- What is netfilter?

- Netfilter Hooks

- Netfilter Implementation

- Hooking into Netfilter

- Iptables

- nftables

- Labs

Netlink Sockets**

- What are netlink Sockets?

- Opening a netlink Socket

- netlink Messages

- Labs

Closing and Evaluation Survey

- Evaluation Survey

Kernel Architecture I

- UNIX and Linux **

- Monolithic and Micro Kernels

- Object-Oriented Methods

- Main Kernel Components

- User-Space and Kernel-Space

Kernel Programming Preview

- Task Structure

- Memory Allocation

- Transferring Data between User and Kernel Spaces

- Object-Oriented Inheritance - Sort Of

- Linked Lists

- Jiffies

- Labs

Modules

- What are Modules?

- A Trivial Example

- Compiling Modules

- Modules vs Built-in

- Module Utilities

- Automatic Module Loading

- Module Usage Count

- Module Licensing

- Exporting Symbols

- Resolving Symbols **

- Labs

Kernel Architecture II

- Processes, Threads, and Tasks

- Kernel Preemption

- Real Time Preemption Patch

- Labs

Kernel Configuration and Compilation

- Installation and Layout of the Kernel Source

- Kernel Browsers

- Kernel Configuration Files

- Kernel Building and Makefiles

- initrd and initramfs

- Labs

Kernel Style and General Considerations

- Coding Style

- Using Generic Kernel Routines and Methods

- Making a Kernel Patch

- sparse

- Using likely() and unlikely()

- Writing Portable Code, CPU, 32/64-bit, Endianness

- Writing for SMP

- Writing for High Memory Systems

- Power Management

- Keeping Security in Mind

- Labs

Race Conditions and Synchronization Methods

- Concurrency and Synchronization Methods

- Atomic Operations

- Bit Operations

- Spinlocks

- Seqlocks

- Disabling Preemption

- Mutexes

- Semaphores

- Completion Functions

- Read-Copy-Update (RCU)

- Reference Counts

- Labs

Memory Addressing

- Virtual Memory Management

- Systems With and Without MMU and the TLB

- Memory Addresses

- High and Low Memory

- Memory Zones

- Special Device Nodes

- NUMA

- Paging

- Page Tables

- page structure

- Labs

Memory Allocation

- Requesting and Releasing Pages

- Buddy System

- Slabs and Cache Allocations

- Memory Pools

- kmalloc()

- vmalloc()

- Early Allocations and bootmem()

- Memory Defragmentation

- Labs

