KOENIG

step forward

Python Data Structures

Introduction

e Curriculum Walkthrough

e What are Data Structures?

e Whatis an algorithm?

e Why are Data Structures and Algorithms important?
e Types of Data Structures

e Types of Algorithms

e Python Programming For Everyone

e Python Programming

e Introduction to DS and Algorithms

Recursion

e What is Recursion

e Why do we need recursion?

e How Recursion works?

e Recursive vs Iterative Solutions

e When to use/avoid Recursion?

e How to write Recursion in 3 steps?

e How to find Fibonacci numbers using Recursion?

Challenging Recursion Problems

e Important Note!
e Power

e Factorial

e productofArray
e recursiveRange

e fib
e SOLUTIONS PART 1
e Reverse

Big O Notation

e Analogy and Time Complexity

e Big O, Big Theta and Big Omega

e Time complexity examples

e Space Complexity

e Drop the Constants and the non dominant terms
e Add vs Multiply

How to measure the codes using Big O?
How to find time complexity for Recursive calls?

How to measure Recursive Algorithms that make multiple calls?

Time Complexities

What is an Array

Types of Array

Arrays in Memory

Create an Array

Insertion Operation

Traversal Operation

Accessing an element of Array

Searching for an element in Array

Deleting an element from Array

Time and Space complexity of One Dimensional Array
One Dimensional Array Practice

Create Two Dimensional Array

Insertion - Two Dimensional Array

Accessing an element of Two Dimensional Array
Traversal - Two Dimensional Array

Searching for an element in Two Dimensional Array
Deletion - Two Dimensional Array

Time and Space complexity of Two Dimensional Array
When to use/avoid array

Lists

What is list? How to create it?
Accessing/Traversing a list

Update/Insert a List

Slice/Delete from a List

Searching for an element in a List

List Operations/Functions

Lists and strings

Common List pitfalls and ways to avoid them
Lists vs Arrays

Time and Space Complexity of List

Challenging Array/List Problems

Middle Function
Solution to Middle Function

e 2D Lists

e Solution to 2D Lists

e Best Score

e Solution to Best Score

e Missing Number

e Solution to Missing Number

e Duplicate Number

e Solution to Duplicate Number
e Pairs

e Solution to Pairs

e WhatisaTuple? How to create it?

e Tuplesin Memory / Accessing an element of Tuple
e Traversing a Tuple

e Search for an element in Tuple

e Tuple Operations/Functions

e Tuple vs List

e Time and Space complexity of Tuples

Linked List

e Whatis a Linked List?

e Linked List vs Arrays

e Types of Linked List

e Linked List in the Memory

e Creation of Singly Linked List

e Insertion in Singly Linked List in Memory
e Insertion in Singly Linked List Algorithm
e Insertion Method in Singly Linked List

e Traversal of Singly Linked List

e Search for a value in Single Linked List

e Deletion of node from Singly Linked List
e Deletion Method in Singly Linked List

e Deletion of entire Singly Linked List

e Time and Space Complexity of Singly Linked List
o Time Complexity of Linked List vs Arrays

Circular Singly Linked List

e Creation of Circular Singly Linked List

e Creation of Circular Singly Linked List

e |nsertion Algorithm in Circular Singly Linked List
e Insertion method in Circular Singly Linked List

e Traversal of Circular Singly Linked List

e Searching a node in Circular Singly Linked List

e Deletion of a node from Circular Singly Linked List

e Deletion Algorithm in Circular Singly Linked List

e Delete Method in Circular Singlu Linked List

e Deletion of entire Circular Singly Linked List

e Time and Space Complexity of Circular Singly Linked List

e What is a Stack?

e Stack Operations

e Create Stack using List without size limit

e QOperations on Stack using List (push, pop, peek, isEmpty, Delete)

e Create Stack with limit (pop, push, peek, isFull, isEmpty, delete)

e (Create Stack using Linked List

e QOperation on Stack using Linked List (pop, push, peek, isEmpty, delete)
e Time and Space Complexity of Stack using Linked List

e When to use/avoid Stack

e Whatis Queue?

e Queue using Python List - no size limit

e Queue using Python List - no size limit, operations (enqueue, dequeue, peek)
e Circular Queue - Python List

e Circular Queue - Python List, Operations (enqueue, dequeue, peek, delete)
e Queue - Linked List

e Queue - Linked List, Operations (Create, Enqueue)

e Queue - Linked List, Operations (Dequeue(), isEmpty, Peek)

e Time and Space complexity of Queue using Linked List

e List vs Linked List Implementation

e Collections Module

e Queue Module

e Multiprocessing module

Tree/Binary tree

e WhatisaTree?

o Why tree?

e Tree Terminology

e How to create basic tree in Python?
e Binary Tree

e Types of Binary Tree

e Binary Tree Representation

e Create Binary Tree (Linked List)

e PreOrder Traversal Binary Tree (Linked List)

e InOrder Traversal Binary Tree (Linked List)

e PostOrder Traversal Binary Tree (Linked List)

e LevelOrder Traversal Binary Tree (Linked List)
e Searching for a node in Binary Tree (Linked List)
e Inserting a node in Binary Tree (Linked List)

e Delete a node from Binary Tree (Linked List)

e Delete entire Binary Tree (Linked List)

e Create Binary Tree (Python List)

e Insert a value Binary Tree (Python List)

e Search for a node in Binary Tree (Python List)
e PreOrder Traversal Binary Tree (Python List)

e InOrder Traversal Binary Tree (Python List)

e PostOrder Traversal Binary Tree (Python List)
e Level Order Traversal Binary Tree (Python List)
e Delete a node from Binary Tree (Python List)

e Delete Entire Binary Tree (Python List)

e Linked List vs Python List Binary Tree

Binary Search Tree

e What is Binary Search Tree? Why do we need it?
e Create a Binary Search Tree

e |nsert a node to BST

e Traverse BST

e Searchin BST

e Delete a node from BST

e Delete entire BST

e Time and Space complexity of BST

AVL Tree

e Whatis an AVL tree?

o Why AVL Tree?

e Common Operations on AVL Trees

e Insert a node in AVL (Left Left Condition)
e Insert a node in AVL (Left Right Condition)
e Insert a node in AVL (Right Right Condition)
e Insert a node in AVL (Right Left Condition)
e Insert a node in AVL (all together)

e Insert a node in AVL (method)

e Delete a node from AVL (LL, LR, RR, RL)

e Delete a node from AVL (all together)

e Delete a node from AVL (method)

Delete entire AVL
Time and Space complexity of AVL Tree

Binary Heap

What is Binary Heap? Why do we need it?

Common operations (Creation, Peek, sizeofheap) on Binary Heap
Insert a node in Binary Heap

Extract a node from Binary Heap

Delete entire Binary Heap

Time and space complexity of Binary Heap

What is Trie? Why do we need it?
Common Operations on Trie (Creation)
Insert a string in Trie

Search for a string in Trie

Delete a string from Trie

Practical use of Trie

Hashing

What is Hashing? Why we need it?
Hashing Terminology

Hash Functions

Types of Collision Resolution Techniques
Hash Table is Full

Pros and Cons of Resolution Techniques
Practical Use of Hashing

Hashing vs Other DS

Sort Algorithms

What is sorting

Types of Sorting
Sorting Terminologies
Bubble Sort

Selection Sort
Insertion Sort

Bucket Sort

Merge Sort

QuickSort Overview

Pivot Function Overview

e Pivot Function Implementation

e QuickSort Algorithm Implementation
e Heap Sort

e Comparison of Sorting Algorithms

Searching Algorithms

e Introduction to Searching Algorithms
e Llinear Search

e Linear Search in Python

e Binary Search

e Binary Search in Python

e Time Complexity of Binary Search

Graph Algorithms

e What is Graph? Why Graph

e Graph Terminology

e Types of Graph

e Graph Representation

e Create a graph using Python

e Create Graph using Python - Add Vertex
e Add Edge

e Remove Edge

e Remove Vertex

Graph Traversal — Breadth First Search and Depth First Search

e Graph traversal - BFS

e BFS Traversal in Python

e Graph Traversal - DFS

e DFS Traversal in Python

e BFS Traversal vs DFS Traversal

Topological Sort Algorithm

e Topological Sort
e Topological Sort Algorithm
e Topological Sort in Python

Single Source Shortest Path

e Single Source Shortest Path Problem (SSSPP)
e BFS for SSSPP
e BFS for SSSPP in Python

e Why does BFS not work with weighted Graph?
e Why does DFS not work for SSSP?

Graph Algorithms - Dijsktra’s Algorithm

e Dijkstra's Algorithm for SSSP

e Dijkstra's Algorithm Visualization

e Dijkstra Implementation Part 1

e Dijkstra Implementation Part 2

e Dijkstra Algorithm Testing

e Dijkstra Algorithm with negative cycle

Graph Algorithms - Bellman Ford Algorithm

e Bellman Ford Algorithm

e Bellman Ford Algorithm with negative cycle
e Why Bellman Ford runs V-1 times?

e Bellman Ford in Python

e BFS vs Dijkstra vs Bellman Ford

