

Python Data Structures

Introduction

• Curriculum Walkthrough

• What are Data Structures?

• What is an algorithm?

• Why are Data Structures and Algorithms important?

• Types of Data Structures

• Types of Algorithms

• Python Programming For Everyone

• Python Programming

• Introduction to DS and Algorithms

Recursion

• What is Recursion

• Why do we need recursion?

• How Recursion works?

• Recursive vs Iterative Solutions

• When to use/avoid Recursion?

• How to write Recursion in 3 steps?

• How to find Fibonacci numbers using Recursion?

Challenging Recursion Problems

• Important Note!

• Power

• Factorial

• productofArray

• recursiveRange

• fib

• SOLUTIONS PART 1

• Reverse

Big O Notation

• Analogy and Time Complexity

• Big O, Big Theta and Big Omega

• Time complexity examples

• Space Complexity

• Drop the Constants and the non dominant terms

• Add vs Multiply

• How to measure the codes using Big O?

• How to find time complexity for Recursive calls?

• How to measure Recursive Algorithms that make multiple calls?

• Time Complexities

Arrays

• What is an Array

• Types of Array

• Arrays in Memory

• Create an Array

• Insertion Operation

• Traversal Operation

• Accessing an element of Array

• Searching for an element in Array

• Deleting an element from Array

• Time and Space complexity of One Dimensional Array

• One Dimensional Array Practice

• Create Two Dimensional Array

• Insertion - Two Dimensional Array

• Accessing an element of Two Dimensional Array

• Traversal - Two Dimensional Array

• Searching for an element in Two Dimensional Array

• Deletion - Two Dimensional Array

• Time and Space complexity of Two Dimensional Array

• When to use/avoid array

Python Lists

• What is list? How to create it?

• Accessing/Traversing a list

• Update/Insert a List

• Slice/Delete from a List

• Searching for an element in a List

• List Operations/Functions

• Lists and strings

• Common List pitfalls and ways to avoid them

• Lists vs Arrays

• Time and Space Complexity of List

Challenging Array/List Problems

• Middle Function

• Solution to Middle Function

• 2D Lists

• Solution to 2D Lists

• Best Score

• Solution to Best Score

• Missing Number

• Solution to Missing Number

• Duplicate Number

• Solution to Duplicate Number

• Pairs

• Solution to Pairs

Tuples

• What is a Tuple? How to create it?

• Tuples in Memory / Accessing an element of Tuple

• Traversing a Tuple

• Search for an element in Tuple

• Tuple Operations/Functions

• Tuple vs List

• Time and Space complexity of Tuples

Linked List

• What is a Linked List?

• Linked List vs Arrays

• Types of Linked List

• Linked List in the Memory

• Creation of Singly Linked List

• Insertion in Singly Linked List in Memory

• Insertion in Singly Linked List Algorithm

• Insertion Method in Singly Linked List

• Traversal of Singly Linked List

• Search for a value in Single Linked List

• Deletion of node from Singly Linked List

• Deletion Method in Singly Linked List

• Deletion of entire Singly Linked List

• Time and Space Complexity of Singly Linked List

• Time Complexity of Linked List vs Arrays

Circular Singly Linked List

• Creation of Circular Singly Linked List

• Creation of Circular Singly Linked List

• Insertion Algorithm in Circular Singly Linked List

• Insertion method in Circular Singly Linked List

• Traversal of Circular Singly Linked List

• Searching a node in Circular Singly Linked List

• Deletion of a node from Circular Singly Linked List

• Deletion Algorithm in Circular Singly Linked List

• Delete Method in Circular Singlu Linked List

• Deletion of entire Circular Singly Linked List

• Time and Space Complexity of Circular Singly Linked List

Stack

• What is a Stack?

• Stack Operations

• Create Stack using List without size limit

• Operations on Stack using List (push, pop, peek, isEmpty, Delete)

• Create Stack with limit (pop, push, peek, isFull, isEmpty, delete)

• Create Stack using Linked List

• Operation on Stack using Linked List (pop, push, peek, isEmpty, delete)

• Time and Space Complexity of Stack using Linked List

• When to use/avoid Stack

Queue

• What is Queue?

• Queue using Python List - no size limit

• Queue using Python List - no size limit , operations (enqueue, dequeue, peek)

• Circular Queue - Python List

• Circular Queue - Python List, Operations (enqueue, dequeue, peek, delete)

• Queue - Linked List

• Queue - Linked List, Operations (Create, Enqueue)

• Queue - Linked List, Operations (Dequeue(), isEmpty, Peek)

• Time and Space complexity of Queue using Linked List

• List vs Linked List Implementation

• Collections Module

• Queue Module

• Multiprocessing module

Tree/Binary tree

• What is a Tree?

• Why tree?

• Tree Terminology

• How to create basic tree in Python?

• Binary Tree

• Types of Binary Tree

• Binary Tree Representation

• Create Binary Tree (Linked List)

• PreOrder Traversal Binary Tree (Linked List)

• InOrder Traversal Binary Tree (Linked List)

• PostOrder Traversal Binary Tree (Linked List)

• LevelOrder Traversal Binary Tree (Linked List)

• Searching for a node in Binary Tree (Linked List)

• Inserting a node in Binary Tree (Linked List)

• Delete a node from Binary Tree (Linked List)

• Delete entire Binary Tree (Linked List)

• Create Binary Tree (Python List)

• Insert a value Binary Tree (Python List)

• Search for a node in Binary Tree (Python List)

• PreOrder Traversal Binary Tree (Python List)

• InOrder Traversal Binary Tree (Python List)

• PostOrder Traversal Binary Tree (Python List)

• Level Order Traversal Binary Tree (Python List)

• Delete a node from Binary Tree (Python List)

• Delete Entire Binary Tree (Python List)

• Linked List vs Python List Binary Tree

Binary Search Tree

• What is Binary Search Tree? Why do we need it?

• Create a Binary Search Tree

• Insert a node to BST

• Traverse BST

• Search in BST

• Delete a node from BST

• Delete entire BST

• Time and Space complexity of BST

AVL Tree

• What is an AVL tree?

• Why AVL Tree?

• Common Operations on AVL Trees

• Insert a node in AVL (Left Left Condition)

• Insert a node in AVL (Left Right Condition)

• Insert a node in AVL (Right Right Condition)

• Insert a node in AVL (Right Left Condition)

• Insert a node in AVL (all together)

• Insert a node in AVL (method)

• Delete a node from AVL (LL, LR, RR, RL)

• Delete a node from AVL (all together)

• Delete a node from AVL (method)

• Delete entire AVL

• Time and Space complexity of AVL Tree

Binary Heap

• What is Binary Heap? Why do we need it?

• Common operations (Creation, Peek, sizeofheap) on Binary Heap

• Insert a node in Binary Heap

• Extract a node from Binary Heap

• Delete entire Binary Heap

• Time and space complexity of Binary Heap

Trie

• What is Trie? Why do we need it?

• Common Operations on Trie (Creation)

• Insert a string in Trie

• Search for a string in Trie

• Delete a string from Trie

• Practical use of Trie

Hashing

• What is Hashing? Why we need it?

• Hashing Terminology

• Hash Functions

• Types of Collision Resolution Techniques

• Hash Table is Full

• Pros and Cons of Resolution Techniques

• Practical Use of Hashing

• Hashing vs Other DS

Sort Algorithms

• What is sorting

• Types of Sorting

• Sorting Terminologies

• Bubble Sort

• Selection Sort

• Insertion Sort

• Bucket Sort

• Merge Sort

• QuickSort Overview

•

• Pivot Function Overview

• Pivot Function Implementation

• QuickSort Algorithm Implementation

• Heap Sort

• Comparison of Sorting Algorithms

Searching Algorithms

• Introduction to Searching Algorithms

• Linear Search

• Linear Search in Python

• Binary Search

• Binary Search in Python

• Time Complexity of Binary Search

Graph Algorithms

• What is Graph? Why Graph

• Graph Terminology

• Types of Graph

• Graph Representation

• Create a graph using Python

• Create Graph using Python - Add Vertex

• Add Edge

• Remove Edge

• Remove Vertex

Graph Traversal – Breadth First Search and Depth First Search

• Graph traversal - BFS

• BFS Traversal in Python

• Graph Traversal - DFS

• DFS Traversal in Python

• BFS Traversal vs DFS Traversal

Topological Sort Algorithm

• Topological Sort

• Topological Sort Algorithm

• Topological Sort in Python

Single Source Shortest Path

• Single Source Shortest Path Problem (SSSPP)

• BFS for SSSPP

• BFS for SSSPP in Python

• Why does BFS not work with weighted Graph?

• Why does DFS not work for SSSP?

•

Graph Algorithms – Dijsktra’s Algorithm

• Dijkstra's Algorithm for SSSP

• Dijkstra's Algorithm Visualization

• Dijkstra Implementation Part 1

• Dijkstra Implementation Part 2

• Dijkstra Algorithm Testing

• Dijkstra Algorithm with negative cycle

Graph Algorithms – Bellman Ford Algorithm

• Bellman Ford Algorithm

• Bellman Ford Algorithm with negative cycle

• Why Bellman Ford runs V-1 times?

• Bellman Ford in Python

• BFS vs Dijkstra vs Bellman Ford

