
Greenplum Architecture

Introduction to the Greenplum Architecture

 The Basics of a Single Computer

 Data in Memory is Fast as Lightning

 Parallel Processing Of Data

 Symmetric Multi-Processing (SMP) Server

 Commodity Hardware Servers are Configured for Greenplum

 The Segment's Responsibilities The Host's Plan is Either All Segments or a Single Segment

 Greenplum has Linear Scalability

 The Architecture of A Greenplum Data Warehouse

 Nexus is Now Available For Greenplum

 Greenplum Table Structures

 The Concepts of Greenplum Tables

 Tables are Either Distributed by Hash or Random

 Random Distribution Uses a Round Robin Technique

 Table are Either a Heap or Append-Only

 Tables are Stored in Either Row or Columnar Format

 Comparing Normal Table Vs. Columnar Tables

 Segments on Distributions are Aligned to Rebuild a Row

 Visualize the Data – Rows vs. Columns

 Table Rows are Either Sorted or Unsorted

 Creating a Clustered Index in Order to Physically Sort Rows

 Physically Ordered Tables Are Faster on Certain Queries

 Another Way to Create a Clustered Table

 Creating a B-Tree Index and then Running Analyze

 Creating a Bitmap Index

 Tables Can Be Partitioned

 Creating a Partitioned Table Using a List

 Creating a Multi-Level Partitioned Table

 Not Null and Unique Constraints

 Unique Constraints That Fail

 Primary Key Constraints

 A Primary Key Automatically Creates a Unique Index

 Creating an Automatic Number Called a Sequence

 Multiple INSERT example Using a Sequence

 Hashing and Data Distribution

 Distribution Keys Hashed on Unique Values Spread Evenly

 Distribution Keys With Non-Unique Values Spread Unevenly

 Best Practices for Choosing a Distribution Key

 The Hash Map Determines which Segment owns the Row

 The Hash Map Determines which Node will Own the Row

 Hash Map Determines which Node will Own the Row

 A Review of the Hashing Process

 Non-Unique Distribution Keys have Skewed Data

 The Technical Details

 Greenplum Limitations

 Tables are Distributed Across All Segments

 The Table Header and the Data Rows are Stored Separately

 Segments Store Rows inside a Data Block Called a Page

 To Read a Data Block a Node Moves the Block into Memory

 A Full Table Scan Means All Nodes Must Read All Rows

 Rows are Organized inside a Page

 Heap Page

 Creating a Table that has a Clustered Index

 Clustered Index Page

 The Row Offset Array is the Guidance System for Every Row

 The Row Offset Array Provides Two Search Options

 The Row Offset Array Helps With Inserts

 B-Trees

 The Building of a B-Tree for a Clustered Index

 When Do I Create a Clustered Index?

 When Do I Create a Non Clustered Index?

 B-Tree for Non Clustered Index on a Clustered Table

 Adding a Non Clustered Index To A

 B-Tree for Non Clustered Index on a Heap Table

 Physical Database Design

 The Four Stages of Modeling for Greenplum - Check out #4

 The Logical Model

 First, Second and Third Normal Form

 The Employee_Table and Department_Table can be Joined

 The Employee_Table and Department_Table Join SQL

 The Extended Logical Model Template

 User Access is of Great Importance

 User Access in Layman’s Terms

 User Access for Joins in Layman’s Terms

 The Nexus Shows Users the Table’s Distribution Key

 Data Demographics:

 Distinct Rows

 Distinct Rows Query

 Max Rows Null

 Max Rows Null Query

 Max Rows Per Value

 Max Rows Per Value

 Typical Rows Per Value

 Change Rating

 Typical Rows Per Value Query For Greenplum Systems

 SQL to Get the Average Rows Per Value for a Column (Mean)

 Factors When Choosing Greenplum Indexes

 Distribution Key Data Demographics Candidate Guidelines

 Distribution key Access Considerations

 Step 1 is to Pick All Potential Distribution Key Columns

 Step 2 is to Pick All Potential Secondary Indexes

 Answer to 2nd Step to Picking Potential Secondary Indexes

 Choose the Distribution Key and Secondary Indexes

 3rd Step is to Picking your Indexes

 Our Index Picks

 Denormalization

 Denormalization

 Derived Data

 Repeating Groups

 Pre-Joining Tables

 Storing Summary Data with a Trigger

 Summary Tables or Data Marts the Old Way

 Horizontal Partitioning the Old Way and the New Way

 Vertical Partitioning the Old Way

 Columnar Tables Are the New Vertical Partitioning

 Nexus for Greenplum

 Nexus Queries Every Major System

 Nexus Data Visualization

 Nexus is Doing a Five-Table Join

 Nexus Generates the SQL Automatically

 Nexus Delivers the Report

 Cross-System Joins From Teradata, Oracle and SQL Server

 The Tabs of the Super Join Builder

 The 9 Tabs of the Super Join Builder

 Objects Tab 1- Selecting Columns in the Objects Tab

 Columns Tab 2- Removing Columns From the Report in the Columns Tab

 Sorting Tab 3

 Joins Tab 4

 Where Tab 5- Using the WHERE Tab For Additional WHERE or AND

 SQL Tab 6 – check paragraph below

 Answer Set Tab 7

 Analytics Tab 9

 Nexus Data Movement

 Moving a Single Table To a Different System

 The Single Table Data Movement Screen

 Moving an Entire Database To a Different System

 The Database Mover Screen and Options Tab

 Converting DDL Table Structures

 Compare and Synchronize

 Compare Two Different Databases From Different Systems

 Comparisons Down to the Column Level

 The Results Tab

 View Differences

 Synchronizing Differences In the Results Tab

 Hound Dog Compression

 The Basics of SQL

 Introduction

 SELECT * (All Columns) in a Table

 Fully Qualifying a Database, Schema and Table

 SELECT Specific Columns in a Table

 Sort the Data with the ORDER BY Keyword

 ORDER BY Defaults to Ascending

 Use the Name or the Number in your ORDER BY Statement

 Two Examples of ORDER BY using Different Techniques

 Changing the ORDER BY to Descending Order

 NULL Values sort First in Ascending Mode (Default)

 NULL Values sort Last in Descending Mode (DESC)

 Major Sort vs. Minor Sorts

 Multiple Sort Keys using Names vs. Numbers

 Sorts are Alphabetical, NOT Logical

 Using A CASE Statement to Sort Logically

 How to ALIAS a Column Name

 A Missing Comma can by Mistake become an Alias

 Comments using Double Dashes are Single Line Comments

 Comments for Multi-Lines

 The WHERE Clause

 The WHERE Clause limits Returning Rows

 Double Quoted Aliases are for Reserved Words and Spaces

 Character Data needs Single Quotes in the WHERE Clause

 Comparisons against a Null Value

 Use IS NULL or IS NOT NULL when dealing with NULLs

 Using Greater Than or Equal To (>=)

 AND in the WHERE Clause

 OR in the WHERE Clause

 Troubleshooting Character Data

 Using Different Columns in an AND Statement

 What is the Order of Precedence?

 Using Parentheses to change the Order of Precedence

 Using an IN List in place of OR

 IN List vs. OR brings the same Results

 Using a NOT IN List

 Null Values in a NOT IN List Bring Back No Rows

 A Technique for Handling Nulls with a NOT IN List

 BETWEEN is Inclusive

 NOT BETWEEN is Also Inclusive

 LIKE uses Wildcards Percent ‘%’ and Underscore ‘_’

 LIKE command Underscore is Wildcard for one Character

 ilike

 LIKE Command Works Differently on Char Vs Varchar

 Troubleshooting LIKE Command on Character Data

 Introducing the TRIM Command

 Introducing the RTRIM Command

 Numbers are Right Justified and Character Data is Left

 A Visual of CHARACTER Data vs. VARCHAR Data

 Use the TRIM command to remove spaces on CHAR Data

 Escape Character in the LIKE Command changes Wildcards

 Escape Characters Turn off Wildcards in the LIKE Command

 Introducing the RTRIM Command

 An example of Data with Left and Right Justification

 A Visual of CHARACTER Data vs. VARCHAR Data

 RTRIM command Removes Trailing spaces on CHAR Data

 Using Like with an AND/OR Clause to Find Letters

 Distinct vs. Group By

 The Distinct Command

 Distinct vs. GROUP BY

 Aggregation

 The 3 Rules of Aggregation

 There are Five Aggregates

 Troubleshooting Aggregates

 GROUP BY when Aggregates and Normal Columns Mix

 GROUP BY delivers one row per Group

 GROUP BY Dept_No or GROUP BY 1 the same thing

 Limiting Rows and Improving Performance with WHERE

 WHERE Clause in Aggregation limits unneeded Calculations

 Keyword HAVING tests Aggregates after they are Totaled

 Aggregates Return Null on Empty Tables

 Keyword HAVING is like an Extra WHERE Clause for Totals

 Keyword HAVING tests Aggregates after they are Totaled

 Getting the Average Values Per Column

 Average Values Per Column For all Columns in a Table

 Three types of Advanced Grouping

 Group By Grouping Sets/Rollup

 GROUP BY Cube

 Join Functions

 Redistribution

 Big Table Small Table Join Strategy

 Duplication of the Smaller Table across All-Distributions

 If the Join Condition is the Distribution Key no Movement

 Matching Rows That Are On The Same Node Naturally

 Strategy 1 of 4 – The Merge Join

 Strategy 2 of 4 – The Hash Join

 Strategy 3 of 4 – The Nested Join

 Strategy 4 of 4 – The Product Join

 A Two-Table Join Using Traditional Syntax

 A two-table join using Non-ANSI Syntax with Table Alias

 You Can Fully Qualify All Columns

 A two-table join using ANSI Syntax

 Both Queries have the same Results and Performance

 LEFT OUTER JOIN

 RIGHT OUTER JOIN

 FULL OUTER JOIN

 Which Tables are the Left and which Tables are Right?

 INNER JOIN with Additional AND Clause

 ANSI INNER JOIN with Additional AND and WHERE Clause

 OUTER JOIN with Additional WHERE and AND Clause

 Evaluation Order for Outer Queries

 The DREADED Product Join

 The Horrifying Cartesian Product Join

 The ANSI Cartesian Join will ERROR

 The CROSS JOIN

 The Self Join

 The Self Join with ANSI Syntax

 How would you Join these two tables?

 An Associative Table is a Bridge that Joins Two Tables

 The 5-Table Join – Logical Insurance Model

 The Nexus Query Chameleon Writes the SQL for Users.

 Date Function

 Current_Date

 Current_Date, Current_Time, and Current_Timestamp

 Current_Time vs. LocalTime With Precision

 Local_Time and Local_Timestamp With Precision

 Now() and Timeofday() Functions

 Adding A Week to a Date

 Add or Subtract Days from a date

 Formatting Dates and Dollar Amounts

 The EXTRACT Command

 EXTRACT Command on the Century

 Date_part Command

 Date_Trunc Command With Time/Dates

 The AGE Command

 Epoch

 Using Intervals

 Interval Arithmetic Results

 A Complex Time Interval example using CAST

 The OVERLAPS Command

 Using Both CAST and CONVERT in Literal Values

 A Better Technique for YEAR, MONTH, and DAY Functions

 Conversions and Formatting

 Postgres Conversion Functions

 To_Char command Examples

 Formatting A Date with To_Char

 To_Number

 To_Date

 To_Timestamp

 Sub-query Functions

 An IN List is much like a Subquery

 The Subquery

 The Three Steps of How a Basic Subquery Works

 These are Equivalent Queries

 The Final Answer Set from the Subquery

 Should you use a Subquery of a Join?

 The Basics of a Correlated Subquery

 The Top Query always runs first in a Correlated Subquery

 Correlated Subquery Example vs. a Join with a Derived Table

 How to handle a NOT IN with Potential NULL Values

 IN is equivalent to =ANY

 Using a Correlated Exists

 How a Correlated Exists matches up

 The Correlated NOT Exists

 OLAP Functions

 CSUM

 The ANSI CSUM

 Troubleshooting The ANSI OLAP on a GROUP BY

 Reset with a PARTITION BY Statement

 PARTITION BY only Resets a Single OLAP not ALL of them

 Moving SUM

 How ANSI Moving SUM Handles the Sort

 Moving SUM every 3-rows Vs a Continuous Average

 Partition By Resets an ANSI OLAP

 Both the Greenplum Moving Average and ANSI Version

 Moving Average

 The Moving Window is Current Row and Preceding

 How Moving Average Handles the Sort

 Moving Average every 3-rows Vs a Continuous Average

 Partition By Resets an ANSI OLAP

 Moving Difference using ANSI Syntax with Partition By

 RANK Defaults to Ascending Order

 Getting RANK to Sort in DESC Order

 RANK() OVER and PARTITION BY

 RANK and DENSE RANK

 PERCENT_RANK() OVER

 COUNT OVER for a Sequential Number

 Troubleshooting COUNT OVER

 The MAX OVER Command

 Troubleshooting MAX OVER

 The MIN OVER Command

 Troubleshooting MIN OVER

 Finding a Value of a Column in the Next Row with MIN

 The Row_Number Command

 Using a Derived Table and Row_Number

 Ordered Analytics OVER

 CURRENT ROW AND UNBOUNDED FOLLOWING

 Different Windowing Options

 The CSUM For Each Product_Id and the Next Start Date

 How Ntile Works

 Ntile

 Ntile Percentile

 Using Tertiles (Partitions of Four)

 NTILE

 Using FIRST_VALUE

 FIRST_VALUE

 LAST_VALUE

 LEAD

 LAG

 CUME_DIST

 SUM(SUM(n))

 Temporary Tables

 There are Two Types of Temporary Tables

 CREATING A Derived Table

 Naming the Derived Table

 Aliasing the Column Names in The Derived Table

 Multiple Ways to Alias the Columns in a Derived Table

 CREATING A Derived Table using the WITH Command

 The Same Derived Query shown Three Different Ways

 Most Derived Tables Are Used To Join To Other Tables

 The Three Components of a Derived Table

 Visualize This Derived Table

 A Derived Table and CAST Statements

 Clever Tricks on Aliasing Columns in a Derived Table

 MULTIPLE Derived Tables using the WITH Command

 Three Steps to Creating a Temporary Table

 Three Versions of Creating a Temporary Table

 ON COMMIT PRESERVE ROWS is the Greenplum Default

 ON COMMIT DELETE ROWS

 How to Use the ON COMMIT DELETE ROWS Option

 ON COMMIT DROP

 Create Table AS/LIKE

 Creating a Clustered Index on a Temporary Table

 Substrings and Positioning Functions

 The CHARACTERS Command Counts Characters

 CHARACTER_LENGTH and OCTET_LENGTH

 The TRIM Command

 Trim Combined with the CHARACTERS Command

 A Visual of the TRIM Command Using Concatenation

 The SUBSTRING Command

 An example using SUBSTRING, TRIM and CHAR Together

 The POSITION Command finds a Letters Position

 Concatenation

 Concatenation and SUBSTRING

 Four Concatenations Together

 Troubleshooting Concatenation

 Interrogating the Data

 The NULLIF Command

 The COALESCE Command – Fill In the Answers

 COALESCE is Equivalent to This CASE Statement

 The COALESCE Command

 The Basics of CAST (Convert and Store)

 A Rounding Example

 Some Great CAST (Convert And STore) example

 Using an ELSE in the Case Statement

 Using an ELSE as a Safety Net

 Rules For a Valued Case Statement

 Rules for a Searched Case Statement

 Valued Case Vs. A Searched Case

 The CASE Challenge

 Combining Searched Case and Valued Case

 A Trick for getting a Horizontal Case

 Nested Case

 Set Operators Functions

 Rules of Set Operators

 INTERSECT Explained Logically

 UNION Explained Logically

 UNION ALL Explained Logically

 EXCEPT Explained Logically

 An Equal Amount of Columns in both SELECT List

 Columns in the SELECT list should be from the same Domain

 The Top Query handles all Aliases

 The Bottom Query does the ORDER BY (a Number)

 Great Trick: Place your Set Operator in a Derived Table

 UNION Vs UNION ALL

 Using UNION ALL and Literals

 A Great example of how EXCEPT works

 USING Multiple SET Operators in a Single Request

 Changing the Order of Precedence with Parentheses

 Using UNION ALL for speed in Merging Data Sets

 View Functions

 The Fundamentals of Views

 Creating a Simple View to Restrict Sensitive Columns/Rows

 Basic Rules for Views

 Exception to the ORDER BY Rule inside a View

 Views sometimes CREATED for Formatting

 Creating a View to Join Tables Together

 Another Way to Alias Columns in a View CREATE

 The Standard Way Most Aliasing is Done

 What Happens When Both Aliasing Options Are Present

 Resolving Aliasing Problems in a View CREATE

 Answer to Resolving Aliasing Problems in a View CREATE

 Aggregates on View Aggregates

 Altering A Table

 A View that Errors After An ALTER

 Table Create and Data Types

 Greenplum Has Only Two Distribution Policies

 Creating a Table With A Single Column Distribution Key

 The Default Table Storage is a Heap

 Creating a Table With a Multi-Column Distribution Key

 Creating a Table With Random Distribution

 Creating a Table With No Distribution Key

 Guidelines for Partitioning a Table

 Creating a Partitioned Table Using a Range

 A Visual of One Year of Data with Range Partitioning

 Creating a Partitioned Table Using a Range Per Day

 Creating a Partitioned Table Using a List

 Creating a Multi-Level Partitioned Table

 Not Null Constraints

 Unique Constraints

 Primary Key Constraints

 Check Constraints

 Append Only Tables

 Column-Orientated Tables

 CREATE INDEX Syntax

 Create Table LIKE

 Greenplum Data Types

 Data Manipulation Language (DML)

 INSERT Syntax # 1

 INSERT Syntax # 2

 INSERT example with Syntax 3

 INSERT/SELECT Command

 Two UPDATE Examples

 Subquery UPDATE Command Syntax

 Join UPDATE Command Syntax

 Fast UPDATE

 The DELETE Command Basic Syntax

 To DELETE or to TRUNCATE

 Subquery and Join DELETE Command Syntax

 ANALYZE and VACUUM

 ANALYZE

 What Columns Should You Analyze?

 Why Analyze?

 VACUUM

 Greenplum Explain

 How to See an EXPLAIN Plan

 The Eight Rules to Reading an EXPLAIN Plan

 Interpreting Keywords in an EXPLAIN Plan

 Interpreting an EXPLAIN Plan

 A Single Segment Retrieve – The Fastest Query

 EXPLAIN With an ORDER BY Statement

 EXPLAIN ANALYZE

 EXPLAIN With a Range Query on a Table Partitioned By Day

 EXPLAIN That Uses a B-Tree Index Scan

 EXPLAIN That Uses a Bitmap Scan

 EXPLAIN With a Simple Subquery

 EXPLAIN With a Columnar Query

 EXPLAIN With a Clustered Index

 EXPLAIN With Join that has to Move Data

 EXPLAIN With Join that has to Move Data

 Changing the Join Query Changes the EXPLAIN Plan

 Analyzing the Tables Structures For a 3-Table Join

 An EXPLAIN For a 3-Table Join

 Explain of a Derived Table vs. a Correlated Subquery

 Statistical Aggregate Functions

 The Stats Table

 Above, is the Stats_Table data in which we will use in our statistical examples

 The STDDEV_POP Function

 The STDDEV_SAMP Function

 The VAR_POP Function

 The VAR_SAMP Function

 The VARIANCE Function

 The CORR Function

 The COVAR_POP Function

 The COVAR_SAMP Function

 The REGR_INTERCEPT Function

 The REGR_SLOPE Function

 The REGR_AVGX Function

 The REGR_AVGY Function

 The REGR_COUNT Function

 The REGR_R2 Function

 The REGR_SXX Function

 The REGR_SXY Function

 The REGR_SYY Function

 Using GROUP BY

