
Course 10266 : Programming in C# with Microsoft Visual Studio 2010

Module 1: Introducing C# and the .NET Framework

This module explains the .NET Framework, and using C# and Visual Studio 2010 for

building .NET Framework applications.

Lessons

 Introduction to the .NET Framework

 Creating Projects Within Visual Studio 2010

 Writing a C# Application

 Building a Graphical Application

 Documenting an Application

 Running and Debugging Applications by Using Visual Studio 2010

Lab : Introducing C# and the .NET Framework

After completing this module, students will be able to:

 Explain the purpose of the .NET Framework.

 Create Microsoft Visual C# projects by using Visual Studio 2010.

 Explain the structure of a C# application.

 Use the WPF Application template to build a simple graphical application.

 Use XML comments to document an application.

 Use the debugger to step through a program.

Module 2: Using C# Programming Constructs

This module explains the syntax of basic C# programming constructs.

Lessons

 Declaring Variables and Assigning Values

 Using Expressions and Operators

 Creating and Using Arrays

 Using Decision Statements

 Using Iteration Statements

Lab : Using C# Programming Constructs

After completing this module, students will be able to:

 Declare variables and assign values.

 Create expressions by using operators.

 Create and use arrays.

 Use decision statements.

 Use iteration statements.

Module 3: Declaring and Calling Methods

This module explains how to create and call methods.

Lessons

 Defining and Invoking Methods

 Specifying Optional Parameters and Output Parameters

Lab : Declaring and Calling Methods

After completing this module, students will be able to:

 Describe how to declare and call methods

 Define and call methods that take optional parameters and output parameters

Module 4: Handling Exceptions

This module explains how to catch exceptions and handle them. Students will also learn

how to throw exceptions.

Lessons

 Handling Exceptions

 Raising Exceptions

Lab : Handling Exceptions

After completing this module, students will be able to:

 Describe how to catch and handle exceptions

 Describe how to create and raise exceptions

Module 5: Reading and Writing Files

This module explains how to perform basic file I/O operations in a C# application.

Lessons

 Accessing the File System

 Reading and Writing Files by Using Streams

Lab : Reading and Writing Files

After completing this module, students will be able to:

 Describe how to access the file system by using the classes that the .NET

Framework provides.

 Describe how to read and write files by using streams.

Module 6: Creating New Types

This module explains how to create and use new types (enumerations, classes, and

structures)

Lessons

 Creating and Using Enumerations

 Creating and Using Classes

 Creating and Using Structs

 Comparing References to Values

Lab : Creating New Types

After completing this module, students will be able to:

 Describe how to create and use enumerations.

 Describe how to create and use classes.

 Describe how to create and use structures.

 Explain the differences between reference and value types.

Module 7: Encapsulating Data and Methods

This module explains how to control the visibility and lifetime of members in a type.

Lessons

 Controlling Visibility of Type Members

 Sharing Methods and Data

Lab : Encapsulating Data and Methods

After completing this module, students will be able to:

 Describe how to control the visibility of type members.

 Describe how to share methods and data.

Module 8: Inheriting From Classes and Implementing Interfaces

This module explains how to use inheritance to create new reference types

Lessons

 Using Inheritance to Define New Reference Types

 Defining and Implementing Interfaces

 Defining Abstract Classes

Lab : Inheriting From Classes and Implementing Interfaces

After completing this module, students will be able to:

 Use inheritance to define new reference types.

 Define and implement interfaces.

 Define abstract classes.

Module 9: Managing the Lifetime of Objects and Controlling Resources

This module explains how to manage the lifetime of objects and control the use of

resources.

Lessons

 Introduction to Garbage Collection

 Managing Resources

Lab : Managing the Lifetime of Objects and Controlling Resources

After completing this module, students will be able to:

 Describe how garbage collection works in the .NET Framework.

 Manage resources effectively in an application.

Module 10: Encapsulating Data and Defining Overloaded Operators

This module explains how to create properties and indexers to encapsulate data, and

how to define operators for this data.

Lessons

 Creating and Using Properties

 Creating and Using Indexers

 Overloading Operators

Lab : Creating and Using Properties

Lab : Creating and Using Indexers

Lab : Overloading Operators

After completing this module, students will be able to:

 Explain how properties work and use them to encapsulate data.

 Describe how to use indexers to access data through an array-like syntax.

 Describe how to use operator overloading to define operators for your own types.

Module 11: Decoupling Methods and Handling Events

This module explains how to decouple an operation from the method that implements

an operation, and how to use these decoupled methods to handle asynchronous events.

Lessons

 Declaring and Using Delegates

 Using Lambda Expressions

 Handling Events

Lab : Decoupling Methods and Handling Events

After completing this module, students will be able to:

 Describe the purpose of delegates, and explain how to use a delegate to decouple

an operation from the implementing method.

 Explain the purpose of lambda expressions, and describe how to use a lambda

expression to define an anonymous method.

 Explain the purpose of events, and describe how to use events to report that

something significant has happened in a type that other parts of the application

need to be aware of.

Module 12: Using Collections and Building Generic Types

This module introduces collections, and describes how to use Generics to implement

type-safe collection classes, structures, interfaces, and methods.

Lessons

 Using Collections

 Creating and Using Generic Types

 Defining Generic Interfaces and Understanding Variance

 Using Generic Methods and Delegates

Lab : Using Collections

Lab : Building Generic Types

After completing this module, students will be able to:

 Use collection classes.

 Define and use generic types.

 Define generic interfaces and explain the concepts of covariance and

contravariance.

 Define and use generic methods and delegates.

Module 13: Building and Enumerating Custom Collection Classes

This module explains how to implement custom collection classes that support

enumeration.

Lessons

 Implementing a Custom Collection Class

 Adding an Enumerator to a Custom Collection Class

Lab : Building and Enumerating Custom Collection Classes

After completing this module, students will be able to:

 Implement a custom collection class.

 Define an enumerator for a custom collection class.

Module 14: Using LINQ to Query Data

This module explains how to query in-memory data by using LINQ.

Lessons

 Using the LINQ Extension Methods and Query Operators

 Building Dynamic LINQ Queries and Expressions

Lab : Using LINQ to Query Data

After completing this module, students will be able to:

 Describe how to use the LINQ extension methods and query operators.

 Describe how to build dynamic LINQ queries and expressions.

Module 15: Integrating Visual C# Code with Dynamic Languages and

COM Components

This module explains how to integrate code written by using a dynamic language such

as Ruby and Python, and technologies such as COM, into a C# application

Lessons

 Integrating C# Code with Ruby and Python

 Accessing COM Components from C#

Lab : Integrating C# Code with Dynamic Languages and COM Components

After completing this module, students will be able to:

 Integrate Ruby and Python code into a Visual C# application.

 Invoke COM components and services from a C# application.

