

Java SE 8 New Features

RT Days FT Days Module Topics

Day 1 Day 1 Course
Introduction

 Reviewing course objectives
 Discussing course format and LVC
 Getting acquainted with instructor and student
 Discussing course topics planned for coverage
 Overview of changes in 8

Introducing
Lambda
Expressions

 Describing the purpose of an anonymous inner class
 Describing drawbacks to anonymous inner classes
 Describing the components of a lambda expression
 Defining a functional interface
 Creating programs that use lambda expressions

A Case for Lambda
Expressions

 Discussing the reasons for adding lambda expressions
to the Java language

 Reviewing the standard way of extracting data in Java
 Refactoring code to reduce redundancy
 Refactoring code to use inner classes
 Refactoring code to use lambda expressions
 Listing the benefits of lambda expressions

Filtering
Collections with
Lambdas

 Iterating though a collection with forEach
 Iterating through a collection using lambda syntax
 Describing the Stream interface
 Filtering a collection using lambda expressions
 Calling an existing method using a method reference
 Chaining multiple methods together
 Comparing function and imperative programming
 Defining pipelines in terms of lambdas and collections

Day 2 Using Built in
Lambda Types

 Listing the built in interfaces included in
java.util.function

 Determining true or false with a Predicate
 Processing an object and return nothing with

Consumer
 Processing one object and return another with

Function
 Generating a new object with Supplier
 Using primitive versions of the base interfaces

 Using binary versions of the base interfaces

 Collection
Operations with
Lambda

 Extracting data from an object using map
 Searching for data using search methods
 Describing the types of stream operations
 Describing the Optional class
 Performing calculations using methods
 Describing lazy processing
 Sorting a stream
 Saving results to a collection using the collect method

Parallel Streams

 Reviewing the key characteristics of streams
 Contrasting old style loop operations with streams
 Describing how to make a stream pipeline execute in

parallel
 Listing the key assumptions needed to use a parallel

pipeline
 Defining reduction
 Describing why reduction requires an associative

function
 Calculating a value using reduce
 Describing the process for decomposing and then

merging work

Day 3 Day 2 Lambda Cookbook

 Modifying a list using removeIf
 Updating a list using replaceAll
 Updating a map using computeIfAbsent,

computerIfPresent, and merge
 Sending the keys and values from a map to a stream
 Reading a file to a stream
 Reading a text file into an ArrayList
 List, walk, and search a directory structure using a

stream
 Flattening a stream using flatMap

Method
Enhancements

 Considering the importance of building good libraries
 Using static methods in Interfaces
 Using default methods
 Understanding default method inheritance rules

Using the
Date/Time API:
Working with Local
Dates and Times

 Listing the goals of the Date/Time API (JSR-310)
 Creating and manage date-based events
 Creating and manage time-based events
 Combining date and time into a single object

Using the
Date/Time API:
Working with Time
Zones

 Working with dates and times across time-zones and
manage changes resulting from daylight savings

 Using the Date/Time API: Working with Date and
Time Amounts

 Defining and create timestamps, periods and

durations
 Applying formatting to local and zoned dates and

times

Day 4 JavaScript on Java
with Nashorn

 Creating and execute shell scripts using JavaScript
and Nashorn

 Developing JavaScript applications that leverage Java
code using Nashorn

 Running JavaScript script from Java applications
usingJSR-223

 Prototype JavaFX applications using Nashorn and
JavaScript

 Intro to Mission
Contro

 Describing JMX and Managed Beans with Mission
Control

 Monitoring CPU utilization with Mission Control
 Analyzing JVM characteristics with Mission Control
 Analyzing heap memory with Mission Control

Intro to Flight
Recorder

 Describing the Java Flight Recorder
 Describing the Java Flight Recorder Architecture
 Starting a Java Flight Recording
 Managing a Java Flight Recording
 Analyzing a Java Flight Recording

