

View related courses	View now
View schedule, local pricing, and register	<u>View now</u>
Delivery mode	ILT, VILT
Course length	2 days
HPE course number	HK904S

Why HPE Education Services?

- IDC MarketScape leader 4 years running for IT education and training*
- Recognized by IDC for leading with global coverage, unmatched technical expertise, and targeted education consulting services*
- Key partnerships with industry leaders OpenStack[®], VMware[®], Linux[®], Microsoft[®], ITIL, PMI, CSA, and (ISC)2
- Complete continuum of training delivery options—self-paced eLearning, custom education consulting, traditional classroom, video on-demand instruction, live virtual instructor-led with hands-on lab, dedicated onsite training
- Simplified purchase option with HPE Training Credits

*Realize Technology Value with Training, IDC Infographic 2037, Sponsored by HPE, January 2016

Managing HPE 3PAR StoreServ II HK904S

The Managing HPE 3PAR StoreServ II course is designed for the experienced HPE 3PAR administrator. The goal of the class is to acquaint the 3PAR administrator with additional topics and features of the HPE 3PAR array. The class is intended to be a follow-up to the Managing HPE 3PAR StoreServ I course.

This training reflects the newest release of the HPE 3PAR OS: 3.3.1. The course is approximately 60% lecture and 40% hands-on labs using HPE 3PAR arrays.

Audience

HPE 3PAR administrators who desire additional training on the advanced features of the HPE 3PAR array.

Prerequisites

- An understanding of general storage concepts
- Successful completion of the Managing HPE 3PAR StoreServ I course
- Operator level functionality in a Windows environment

Course Objectives

At the conclusion of this course the student should be able to:

• Work with Dynamic Optimization to change volumes characteristics (media type, raid level, etc.)

- Work with Adaptive Optimization to implement virtual volume tiering to save storage costs
- Work with Priority Optimization to prioritize higher priority workloads over lower priority workloads
- Use Remote Copy to replicate data between arrays
- Understand the Peer Persistence high availability feature when used in conjunction with Remote Copy
- Migrate data between arrays using Peer Motion in a Storage Federation

Detailed Course Outline

Dynamic Optimization	 Introduction to the Dynamic Optimization feature and its benefits: changing raid levels, media types and set sizes using DO 	 Performing a DO tune and converting a volume simultaneously
	 Dynamic Optimization use cases: cost, availability, and performance 	 Dynamic Optimization troubleshooting: performing a Restart and Rollback
	 Using SSMC and the CLI to tune a volume's user space and copy space 	
Adaptive Optimization	 Introduction to the Adaptive Optimization feature and using AO to balance performance and cost 	 Configuring AO and managing AO using the SSMC GUI and the CLI
	Dynamic Optimization vs. Adaptive Optimization	Monitoring AO and looking at AO effectiveness
	Components of AO: the 128MG region, region movement,	AO latency thresholds
	AO sizing goals and the AO algorithm	AO best practices
		AO reports in SSMC
Priority Optimization	 Introduction to Priority Optimization and Quality of Service implementation 	 Priority Optimization using Priorities and the System Busy level
	Priority Optimization use cases	Using Latency Goals with Priority Optimization
	Priority Optimization: how it works	Performance considerations and Priority Optimization
	Priority Optimization configuration using SSMC and the CLI	 Priority Optimization monitoring using SSMC and CLI commands
Remote Copy	Introduction to replication principles and Remote Copy	Remote Copy configurations: One-to-Many, Many-to- One, and M-to-N
	Replication using RCIP and RCFC protocols	 Remote Copy failure scenarios Failing over a remote copy group Remote copy configuration and administration using SSMC and the CLI
	Replication and thin provisioning, dedup, and compression	
	Remote copy groups and data integrity	
	Remote copy modes: Synchronous, Periodic Asynchronous, and Async Streaming	
	Replication using Remote Copy between three arrays using Synchronous Long Distance modes	
Peer Persistence	 Introduction to Peer Persistence and using Peer Persistence with Remote Copy 	Failover scenarios with Peer Persistence
	 Using Peer Persistence for disaster tolerant data and load balancing 	 Peer Persistence path management 3DC (3 Data Center) Peer Persistence
	 Performing an Automatic Transparent failover using Quorum Witness or a Manual Transparent failover 	Peer Persistence vs. Synchronous Long Distance
	Quorum Witness details and requirements	
Storage Federation with Peer Motion	Data Migration concepts using Peer Motion	Storage Federation use cases and features
	Bi-directional migration using Storage Federation	Storage Federation supported configurations
	Migration of data using Peer Motion using SSMC	Migration of data using the PMU CLI

Learn more at

hpe.com/ww/learnstorage

Follow us:

f 🎔 in 🔊 🗠

Hewlett Packard Enterprise © Copyright 2017 Hewlett Packard Enterprise Development LP. The information contained herein is subject to change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. The OpenStack Word Mark is either a registered trademark/service mark or trademark/service mark of the OpenStack Foundation, in the United States and other countries and is used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation or the OpenStack community. Pivotal and Cloud Foundry are trademarks and/or registered trademarks of Pivotal Software, Inc. in the United States and/or other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.

Page 2

c04599841, June 2017, HK904S G.00